OpenOCD
arm_adi_v5.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2006 by Magnus Lundin *
5  * lundin@mlu.mine.nu *
6  * *
7  * Copyright (C) 2008 by Spencer Oliver *
8  * spen@spen-soft.co.uk *
9  * *
10  * Copyright (C) 2009-2010 by Oyvind Harboe *
11  * oyvind.harboe@zylin.com *
12  * *
13  * Copyright (C) 2009-2010 by David Brownell *
14  * *
15  * Copyright (C) 2013 by Andreas Fritiofson *
16  * andreas.fritiofson@gmail.com *
17  * *
18  * Copyright (C) 2019-2021, Ampere Computing LLC *
19  ***************************************************************************/
20 
50 /*
51  * Relevant specifications from ARM include:
52  *
53  * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
54  * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
55  *
56  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
57  * Cortex-M3(tm) TRM, ARM DDI 0337G
58  */
59 
60 #ifdef HAVE_CONFIG_H
61 #include "config.h"
62 #endif
63 
64 #include "jtag/interface.h"
65 #include "arm.h"
66 #include "arm_adi_v5.h"
67 #include "arm_coresight.h"
68 #include "jtag/swd.h"
69 #include "transport/transport.h"
70 #include <helper/align.h>
71 #include <helper/jep106.h>
72 #include <helper/time_support.h>
73 #include <helper/list.h>
74 #include <helper/jim-nvp.h>
75 
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
77 
78 /*
79  uint32_t tar_block_size(uint32_t address)
80  Return the largest block starting at address that does not cross a tar block size alignment boundary
81 */
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
83 {
84  return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
85 }
86 
87 /***************************************************************************
88  * *
89  * DP and MEM-AP register access through APACC and DPACC *
90  * *
91 ***************************************************************************/
92 
93 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
94 {
95  csw |= ap->csw_default;
96 
97  if (csw != ap->csw_value) {
98  /* LOG_DEBUG("DAP: Set CSW %x",csw); */
99  int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW(ap->dap), csw);
100  if (retval != ERROR_OK) {
101  ap->csw_value = 0;
102  return retval;
103  }
104  ap->csw_value = csw;
105  }
106  return ERROR_OK;
107 }
108 
109 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
110 {
111  if (!ap->tar_valid || tar != ap->tar_value) {
112  /* LOG_DEBUG("DAP: Set TAR %x",tar); */
113  int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR(ap->dap), (uint32_t)(tar & 0xffffffffUL));
114  if (retval == ERROR_OK && is_64bit_ap(ap)) {
115  /* See if bits 63:32 of tar is different from last setting */
116  if (!ap->tar_valid || (ap->tar_value >> 32) != (tar >> 32))
117  retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64(ap->dap), (uint32_t)(tar >> 32));
118  }
119  if (retval != ERROR_OK) {
120  ap->tar_valid = false;
121  return retval;
122  }
123  ap->tar_value = tar;
124  ap->tar_valid = true;
125  }
126  return ERROR_OK;
127 }
128 
129 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
130 {
131  uint32_t lower;
132  uint32_t upper = 0;
133 
134  int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR(ap->dap), &lower);
135  if (retval == ERROR_OK && is_64bit_ap(ap))
136  retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64(ap->dap), &upper);
137 
138  if (retval != ERROR_OK) {
139  ap->tar_valid = false;
140  return retval;
141  }
142 
143  retval = dap_run(ap->dap);
144  if (retval != ERROR_OK) {
145  ap->tar_valid = false;
146  return retval;
147  }
148 
149  *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
150 
151  ap->tar_value = *tar;
152  ap->tar_valid = true;
153  return ERROR_OK;
154 }
155 
156 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
157 {
158  switch (ap->csw_value & CSW_ADDRINC_MASK) {
159  case CSW_ADDRINC_SINGLE:
160  switch (ap->csw_value & CSW_SIZE_MASK) {
161  case CSW_8BIT:
162  return 1;
163  case CSW_16BIT:
164  return 2;
165  case CSW_32BIT:
166  return 4;
167  default:
168  return 0;
169  }
170  case CSW_ADDRINC_PACKED:
171  return 4;
172  }
173  return 0;
174 }
175 
176 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
177  */
178 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
179 {
180  if (!ap->tar_valid)
181  return;
182 
183  uint32_t inc = mem_ap_get_tar_increment(ap);
184  if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
185  ap->tar_valid = false;
186  else
187  ap->tar_value += inc;
188 }
189 
207 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
208 {
209  int retval;
210  retval = mem_ap_setup_csw(ap, csw);
211  if (retval != ERROR_OK)
212  return retval;
213  retval = mem_ap_setup_tar(ap, tar);
214  if (retval != ERROR_OK)
215  return retval;
216  return ERROR_OK;
217 }
218 
230 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
231  uint32_t *value)
232 {
233  int retval;
234 
235  /* Use banked addressing (REG_BDx) to avoid some link traffic
236  * (updating TAR) when reading several consecutive addresses.
237  */
238  retval = mem_ap_setup_transfer(ap,
240  address & 0xFFFFFFFFFFFFFFF0ull);
241  if (retval != ERROR_OK)
242  return retval;
243 
244  return dap_queue_ap_read(ap, MEM_AP_REG_BD0(ap->dap) | (address & 0xC), value);
245 }
246 
260  uint32_t *value)
261 {
262  int retval;
263 
264  retval = mem_ap_read_u32(ap, address, value);
265  if (retval != ERROR_OK)
266  return retval;
267 
268  return dap_run(ap->dap);
269 }
270 
282 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
283  uint32_t value)
284 {
285  int retval;
286 
287  /* Use banked addressing (REG_BDx) to avoid some link traffic
288  * (updating TAR) when writing several consecutive addresses.
289  */
290  retval = mem_ap_setup_transfer(ap,
292  address & 0xFFFFFFFFFFFFFFF0ull);
293  if (retval != ERROR_OK)
294  return retval;
295 
296  return dap_queue_ap_write(ap, MEM_AP_REG_BD0(ap->dap) | (address & 0xC),
297  value);
298 }
299 
312  uint32_t value)
313 {
314  int retval = mem_ap_write_u32(ap, address, value);
315 
316  if (retval != ERROR_OK)
317  return retval;
318 
319  return dap_run(ap->dap);
320 }
321 
334 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
335  target_addr_t address, bool addrinc)
336 {
337  struct adiv5_dap *dap = ap->dap;
338  size_t nbytes = size * count;
339  const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
340  uint32_t csw_size;
341  target_addr_t addr_xor;
342  int retval = ERROR_OK;
343 
344  /* TI BE-32 Quirks mode:
345  * Writes on big-endian TMS570 behave very strangely. Observed behavior:
346  * size write address bytes written in order
347  * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
348  * 2 TAR ^ 2 (val >> 8), (val)
349  * 1 TAR ^ 3 (val)
350  * For example, if you attempt to write a single byte to address 0, the processor
351  * will actually write a byte to address 3.
352  *
353  * To make writes of size < 4 work as expected, we xor a value with the address before
354  * setting the TAP, and we set the TAP after every transfer rather then relying on
355  * address increment. */
356 
357  if (size == 4) {
358  csw_size = CSW_32BIT;
359  addr_xor = 0;
360  } else if (size == 2) {
361  csw_size = CSW_16BIT;
362  addr_xor = dap->ti_be_32_quirks ? 2 : 0;
363  } else if (size == 1) {
364  csw_size = CSW_8BIT;
365  addr_xor = dap->ti_be_32_quirks ? 3 : 0;
366  } else {
368  }
369 
370  if (ap->unaligned_access_bad && (address % size != 0))
372 
373  while (nbytes > 0) {
374  uint32_t this_size = size;
375 
376  /* Select packed transfer if possible */
377  if (addrinc && ap->packed_transfers && nbytes >= 4
378  && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
379  this_size = 4;
380  retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
381  } else {
382  retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
383  }
384 
385  if (retval != ERROR_OK)
386  break;
387 
388  retval = mem_ap_setup_tar(ap, address ^ addr_xor);
389  if (retval != ERROR_OK)
390  return retval;
391 
392  /* How many source bytes each transfer will consume, and their location in the DRW,
393  * depends on the type of transfer and alignment. See ARM document IHI0031C. */
394  uint32_t outvalue = 0;
395  uint32_t drw_byte_idx = address;
396  if (dap->ti_be_32_quirks) {
397  switch (this_size) {
398  case 4:
399  outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
400  outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
401  outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
402  outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
403  break;
404  case 2:
405  outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
406  outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
407  break;
408  case 1:
409  outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
410  break;
411  }
412  } else if (dap->nu_npcx_quirks) {
413  switch (this_size) {
414  case 4:
415  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
416  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
417  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
418  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
419  break;
420  case 2:
421  outvalue |= (uint32_t)*buffer << 8 * (drw_byte_idx++ & 3);
422  outvalue |= (uint32_t)*(buffer+1) << 8 * (drw_byte_idx++ & 3);
423  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
424  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
425  break;
426  case 1:
427  outvalue |= (uint32_t)*buffer << 8 * (drw_byte_idx++ & 3);
428  outvalue |= (uint32_t)*buffer << 8 * (drw_byte_idx++ & 3);
429  outvalue |= (uint32_t)*buffer << 8 * (drw_byte_idx++ & 3);
430  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
431  }
432  } else {
433  switch (this_size) {
434  case 4:
435  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
436  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
437  /* fallthrough */
438  case 2:
439  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
440  /* fallthrough */
441  case 1:
442  outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
443  }
444  }
445 
446  nbytes -= this_size;
447 
448  retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW(dap), outvalue);
449  if (retval != ERROR_OK)
450  break;
451 
453  if (addrinc)
454  address += this_size;
455  }
456 
457  /* REVISIT: Might want to have a queued version of this function that does not run. */
458  if (retval == ERROR_OK)
459  retval = dap_run(dap);
460 
461  if (retval != ERROR_OK) {
462  target_addr_t tar;
463  if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
464  LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
465  else
466  LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
467  }
468 
469  return retval;
470 }
471 
484 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
485  target_addr_t adr, bool addrinc)
486 {
487  struct adiv5_dap *dap = ap->dap;
488  size_t nbytes = size * count;
489  const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
490  uint32_t csw_size;
491  target_addr_t address = adr;
492  int retval = ERROR_OK;
493 
494  /* TI BE-32 Quirks mode:
495  * Reads on big-endian TMS570 behave strangely differently than writes.
496  * They read from the physical address requested, but with DRW byte-reversed.
497  * For example, a byte read from address 0 will place the result in the high bytes of DRW.
498  * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
499  * so avoid them. */
500 
501  if (size == 4)
502  csw_size = CSW_32BIT;
503  else if (size == 2)
504  csw_size = CSW_16BIT;
505  else if (size == 1)
506  csw_size = CSW_8BIT;
507  else
509 
510  if (ap->unaligned_access_bad && (adr % size != 0))
512 
513  /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
514  * over-allocation if packed transfers are going to be used, but determining the real need at
515  * this point would be messy. */
516  uint32_t *read_buf = calloc(count, sizeof(uint32_t));
517  /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
518  uint32_t *read_ptr = read_buf;
519  if (!read_buf) {
520  LOG_ERROR("Failed to allocate read buffer");
521  return ERROR_FAIL;
522  }
523 
524  /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
525  * useful bytes it contains, and their location in the word, depends on the type of transfer
526  * and alignment. */
527  while (nbytes > 0) {
528  uint32_t this_size = size;
529 
530  /* Select packed transfer if possible */
531  if (addrinc && ap->packed_transfers && nbytes >= 4
532  && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
533  this_size = 4;
534  retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
535  } else {
536  retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
537  }
538  if (retval != ERROR_OK)
539  break;
540 
541  retval = mem_ap_setup_tar(ap, address);
542  if (retval != ERROR_OK)
543  break;
544 
545  retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW(dap), read_ptr++);
546  if (retval != ERROR_OK)
547  break;
548 
549  nbytes -= this_size;
550  if (addrinc)
551  address += this_size;
552 
554  }
555 
556  if (retval == ERROR_OK)
557  retval = dap_run(dap);
558 
559  /* Restore state */
560  address = adr;
561  nbytes = size * count;
562  read_ptr = read_buf;
563 
564  /* If something failed, read TAR to find out how much data was successfully read, so we can
565  * at least give the caller what we have. */
566  if (retval != ERROR_OK) {
567  target_addr_t tar;
568  if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
569  /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
570  LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
571  if (nbytes > tar - address)
572  nbytes = tar - address;
573  } else {
574  LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
575  nbytes = 0;
576  }
577  }
578 
579  /* Replay loop to populate caller's buffer from the correct word and byte lane */
580  while (nbytes > 0) {
581  uint32_t this_size = size;
582 
583  if (addrinc && ap->packed_transfers && nbytes >= 4
584  && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
585  this_size = 4;
586  }
587 
588  if (dap->ti_be_32_quirks) {
589  switch (this_size) {
590  case 4:
591  *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
592  *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
593  /* fallthrough */
594  case 2:
595  *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
596  /* fallthrough */
597  case 1:
598  *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
599  }
600  } else {
601  switch (this_size) {
602  case 4:
603  *buffer++ = *read_ptr >> 8 * (address++ & 3);
604  *buffer++ = *read_ptr >> 8 * (address++ & 3);
605  /* fallthrough */
606  case 2:
607  *buffer++ = *read_ptr >> 8 * (address++ & 3);
608  /* fallthrough */
609  case 1:
610  *buffer++ = *read_ptr >> 8 * (address++ & 3);
611  }
612  }
613 
614  read_ptr++;
615  nbytes -= this_size;
616  }
617 
618  free(read_buf);
619  return retval;
620 }
621 
623  uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
624 {
625  return mem_ap_read(ap, buffer, size, count, address, true);
626 }
627 
629  const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
630 {
631  return mem_ap_write(ap, buffer, size, count, address, true);
632 }
633 
635  uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
636 {
637  return mem_ap_read(ap, buffer, size, count, address, false);
638 }
639 
641  const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
642 {
643  return mem_ap_write(ap, buffer, size, count, address, false);
644 }
645 
646 /*--------------------------------------------------------------------------*/
647 
648 
649 #define DAP_POWER_DOMAIN_TIMEOUT (10)
650 
651 /*--------------------------------------------------------------------------*/
652 
657 {
658  dap->select = DP_SELECT_INVALID;
659  dap->last_read = NULL;
660 
661  int i;
662  for (i = 0; i <= DP_APSEL_MAX; i++) {
663  /* force csw and tar write on the next mem-ap access */
664  dap->ap[i].tar_valid = false;
665  dap->ap[i].csw_value = 0;
666  }
667 }
668 
675 int dap_dp_init(struct adiv5_dap *dap)
676 {
677  int retval;
678 
679  LOG_DEBUG("%s", adiv5_dap_name(dap));
680 
681  dap->do_reconnect = false;
683 
684  /*
685  * Early initialize dap->dp_ctrl_stat.
686  * In jtag mode only, if the following queue run (in dap_dp_poll_register)
687  * fails and sets the sticky error, it will trigger the clearing
688  * of the sticky. Without this initialization system and debug power
689  * would be disabled while clearing the sticky error bit.
690  */
692 
693  /*
694  * This write operation clears the sticky error bit in jtag mode only and
695  * is ignored in swd mode. It also powers-up system and debug domains in
696  * both jtag and swd modes, if not done before.
697  */
699  if (retval != ERROR_OK)
700  return retval;
701 
702  retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
703  if (retval != ERROR_OK)
704  return retval;
705 
706  retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
707  if (retval != ERROR_OK)
708  return retval;
709 
710  /* Check that we have debug power domains activated */
711  LOG_DEBUG("DAP: wait CDBGPWRUPACK");
712  retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
715  if (retval != ERROR_OK)
716  return retval;
717 
718  if (!dap->ignore_syspwrupack) {
719  LOG_DEBUG("DAP: wait CSYSPWRUPACK");
720  retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
723  if (retval != ERROR_OK)
724  return retval;
725  }
726 
727  retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728  if (retval != ERROR_OK)
729  return retval;
730 
731  /* With debug power on we can activate OVERRUN checking */
733  retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
734  if (retval != ERROR_OK)
735  return retval;
736  retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
737  if (retval != ERROR_OK)
738  return retval;
739 
740  retval = dap_run(dap);
741  if (retval != ERROR_OK)
742  return retval;
743 
744  return retval;
745 }
746 
753 {
754  LOG_DEBUG("%s", adiv5_dap_name(dap));
755 
756  /*
757  * Early initialize dap->dp_ctrl_stat.
758  * In jtag mode only, if the following atomic reads fail and set the
759  * sticky error, it will trigger the clearing of the sticky. Without this
760  * initialization system and debug power would be disabled while clearing
761  * the sticky error bit.
762  */
764 
765  dap->do_reconnect = false;
766 
768  if (dap->do_reconnect) {
769  /* dap connect calls dap_dp_init() after transport dependent initialization */
770  return dap->ops->connect(dap);
771  } else {
772  return dap_dp_init(dap);
773  }
774 }
775 
783 int mem_ap_init(struct adiv5_ap *ap)
784 {
785  /* check that we support packed transfers */
786  uint32_t csw, cfg;
787  int retval;
788  struct adiv5_dap *dap = ap->dap;
789 
790  /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
791  /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
792  retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &cfg);
793  if (retval != ERROR_OK)
794  return retval;
795 
796  retval = dap_run(dap);
797  if (retval != ERROR_OK)
798  return retval;
799 
800  ap->cfg_reg = cfg;
801  ap->tar_valid = false;
802  ap->csw_value = 0; /* force csw and tar write */
804  if (retval != ERROR_OK)
805  return retval;
806 
807  retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW(dap), &csw);
808  if (retval != ERROR_OK)
809  return retval;
810 
811  retval = dap_run(dap);
812  if (retval != ERROR_OK)
813  return retval;
814 
815  if (csw & CSW_ADDRINC_PACKED)
816  ap->packed_transfers = true;
817  else
818  ap->packed_transfers = false;
819 
820  /* Packed transfers on TI BE-32 processors do not work correctly in
821  * many cases. */
822  if (dap->ti_be_32_quirks)
823  ap->packed_transfers = false;
824 
825  LOG_DEBUG("MEM_AP Packed Transfers: %s",
826  ap->packed_transfers ? "enabled" : "disabled");
827 
828  /* The ARM ADI spec leaves implementation-defined whether unaligned
829  * memory accesses work, only work partially, or cause a sticky error.
830  * On TI BE-32 processors, reads seem to return garbage in some bytes
831  * and unaligned writes seem to cause a sticky error.
832  * TODO: it would be nice to have a way to detect whether unaligned
833  * operations are supported on other processors. */
835 
836  LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
837  !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
838 
839  return ERROR_OK;
840 }
841 
854 int dap_to_swd(struct adiv5_dap *dap)
855 {
856  LOG_DEBUG("Enter SWD mode");
857 
858  return dap_send_sequence(dap, JTAG_TO_SWD);
859 }
860 
872 int dap_to_jtag(struct adiv5_dap *dap)
873 {
874  LOG_DEBUG("Enter JTAG mode");
875 
876  return dap_send_sequence(dap, SWD_TO_JTAG);
877 }
878 
879 /* CID interpretation -- see ARM IHI 0029E table B2-7
880  * and ARM IHI 0031E table D1-2.
881  *
882  * From 2009/11/25 commit 21378f58b604:
883  * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
884  * Let's keep it as is, for the time being
885  */
886 static const char *class_description[16] = {
887  [0x0] = "Generic verification component",
888  [0x1] = "ROM table",
889  [0x2] = "Reserved",
890  [0x3] = "Reserved",
891  [0x4] = "Reserved",
892  [0x5] = "Reserved",
893  [0x6] = "Reserved",
894  [0x7] = "Reserved",
895  [0x8] = "Reserved",
896  [0x9] = "CoreSight component",
897  [0xA] = "Reserved",
898  [0xB] = "Peripheral Test Block",
899  [0xC] = "Reserved",
900  [0xD] = "OptimoDE DESS", /* see above */
901  [0xE] = "Generic IP component",
902  [0xF] = "CoreLink, PrimeCell or System component",
903 };
904 
905 #define ARCH_ID(architect, archid) ( \
906  (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
907  (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
908 )
909 
910 static const struct {
911  uint32_t arch_id;
912  const char *description;
913 } class0x9_devarch[] = {
914  /* keep same unsorted order as in ARM IHI0029E */
915  { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
916  { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
917  { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
918  { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
919  { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
920  { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
921  { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
922  { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
923  { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
924  { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
925  { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
926  { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
927  { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
928  { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
929  { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
930  { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
931  { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
932  { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
933  { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
934  { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
935  { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
936  { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
937 };
938 
939 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
940 #define DEVARCH_MEM_AP ARCH_ID(ARM_ID, 0x0A17)
941 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
942 #define DEVARCH_UNKNOWN_V2 ARCH_ID(ARM_ID, 0x0A47)
943 
944 static const char *class0x9_devarch_description(uint32_t devarch)
945 {
946  if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
947  return "not present";
948 
949  for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
950  if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
951  return class0x9_devarch[i].description;
952 
953  return "unknown";
954 }
955 
956 static const struct {
957  enum ap_type type;
958  const char *description;
959 } ap_types[] = {
960  { AP_TYPE_JTAG_AP, "JTAG-AP" },
961  { AP_TYPE_COM_AP, "COM-AP" },
962  { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
963  { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
964  { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
965  { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
966  { AP_TYPE_APB4_AP, "MEM-AP APB4" },
967  { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
968  { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
969 };
970 
971 static const char *ap_type_to_description(enum ap_type type)
972 {
973  for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
974  if (type == ap_types[i].type)
975  return ap_types[i].description;
976 
977  return "Unknown";
978 }
979 
980 bool is_ap_num_valid(struct adiv5_dap *dap, uint64_t ap_num)
981 {
982  if (!dap)
983  return false;
984 
985  /* no autodetection, by now, so uninitialized is equivalent to ADIv5 for
986  * backward compatibility */
987  if (!is_adiv6(dap)) {
988  if (ap_num > DP_APSEL_MAX)
989  return false;
990  return true;
991  }
992 
993  if (is_adiv6(dap)) {
994  if (ap_num & 0x0fffULL)
995  return false;
996  if (dap->asize != 0)
997  if (ap_num & ((~0ULL) << dap->asize))
998  return false;
999  return true;
1000  }
1001 
1002  return false;
1003 }
1004 
1005 /*
1006  * This function checks the ID for each access port to find the requested Access Port type
1007  * It also calls dap_get_ap() to increment the AP refcount
1008  */
1009 int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
1010 {
1011  if (is_adiv6(dap)) {
1012  /* TODO: scan the ROM table and detect the AP available */
1013  LOG_DEBUG("On ADIv6 we cannot scan all the possible AP");
1014  return ERROR_FAIL;
1015  }
1016 
1017  /* Maximum AP number is 255 since the SELECT register is 8 bits */
1018  for (unsigned int ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
1019  struct adiv5_ap *ap = dap_get_ap(dap, ap_num);
1020  if (!ap)
1021  continue;
1022 
1023  /* read the IDR register of the Access Port */
1024  uint32_t id_val = 0;
1025 
1026  int retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), &id_val);
1027  if (retval != ERROR_OK) {
1028  dap_put_ap(ap);
1029  return retval;
1030  }
1031 
1032  retval = dap_run(dap);
1033 
1034  /* Reading register for a non-existent AP should not cause an error,
1035  * but just to be sure, try to continue searching if an error does happen.
1036  */
1037  if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
1038  LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
1039  ap_type_to_description(type_to_find),
1040  ap_num, id_val);
1041 
1042  *ap_out = ap;
1043  return ERROR_OK;
1044  }
1045  dap_put_ap(ap);
1046  }
1047 
1048  LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1049  return ERROR_FAIL;
1050 }
1051 
1052 static inline bool is_ap_in_use(struct adiv5_ap *ap)
1053 {
1054  return ap->refcount > 0 || ap->config_ap_never_release;
1055 }
1056 
1057 static struct adiv5_ap *_dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
1058 {
1059  if (!is_ap_num_valid(dap, ap_num)) {
1060  LOG_ERROR("Invalid AP#0x%" PRIx64, ap_num);
1061  return NULL;
1062  }
1063  if (is_adiv6(dap)) {
1064  for (unsigned int i = 0; i <= DP_APSEL_MAX; i++) {
1065  struct adiv5_ap *ap = &dap->ap[i];
1066  if (is_ap_in_use(ap) && ap->ap_num == ap_num) {
1067  ++ap->refcount;
1068  return ap;
1069  }
1070  }
1071  for (unsigned int i = 0; i <= DP_APSEL_MAX; i++) {
1072  struct adiv5_ap *ap = &dap->ap[i];
1073  if (!is_ap_in_use(ap)) {
1074  ap->ap_num = ap_num;
1075  ++ap->refcount;
1076  return ap;
1077  }
1078  }
1079  LOG_ERROR("No more AP available!");
1080  return NULL;
1081  }
1082 
1083  /* ADIv5 */
1084  struct adiv5_ap *ap = &dap->ap[ap_num];
1085  ap->ap_num = ap_num;
1086  ++ap->refcount;
1087  return ap;
1088 }
1089 
1090 /* Return AP with specified ap_num. Increment AP refcount */
1091 struct adiv5_ap *dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
1092 {
1093  struct adiv5_ap *ap = _dap_get_ap(dap, ap_num);
1094  if (ap)
1095  LOG_DEBUG("refcount AP#0x%" PRIx64 " get %u", ap_num, ap->refcount);
1096  return ap;
1097 }
1098 
1099 /* Return AP with specified ap_num. Increment AP refcount and keep it non-zero */
1100 struct adiv5_ap *dap_get_config_ap(struct adiv5_dap *dap, uint64_t ap_num)
1101 {
1102  struct adiv5_ap *ap = _dap_get_ap(dap, ap_num);
1103  if (ap) {
1104  ap->config_ap_never_release = true;
1105  LOG_DEBUG("refcount AP#0x%" PRIx64 " get_config %u", ap_num, ap->refcount);
1106  }
1107  return ap;
1108 }
1109 
1110 /* Decrement AP refcount and release the AP when refcount reaches zero */
1111 int dap_put_ap(struct adiv5_ap *ap)
1112 {
1113  if (ap->refcount == 0) {
1114  LOG_ERROR("BUG: refcount AP#0x%" PRIx64 " put underflow", ap->ap_num);
1115  return ERROR_FAIL;
1116  }
1117 
1118  --ap->refcount;
1119 
1120  LOG_DEBUG("refcount AP#0x%" PRIx64 " put %u", ap->ap_num, ap->refcount);
1121  if (!is_ap_in_use(ap)) {
1122  /* defaults from dap_instance_init() */
1123  ap->ap_num = DP_APSEL_INVALID;
1124  ap->memaccess_tck = 255;
1125  ap->tar_autoincr_block = (1 << 10);
1128  }
1129  return ERROR_OK;
1130 }
1131 
1132 static int dap_get_debugbase(struct adiv5_ap *ap,
1133  target_addr_t *dbgbase, uint32_t *apid)
1134 {
1135  struct adiv5_dap *dap = ap->dap;
1136  int retval;
1137  uint32_t baseptr_upper, baseptr_lower;
1138 
1139  if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1140  retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &ap->cfg_reg);
1141  if (retval != ERROR_OK)
1142  return retval;
1143  }
1144  retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE(dap), &baseptr_lower);
1145  if (retval != ERROR_OK)
1146  return retval;
1147  retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), apid);
1148  if (retval != ERROR_OK)
1149  return retval;
1150  /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1152  retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64(dap), &baseptr_upper);
1153  if (retval != ERROR_OK)
1154  return retval;
1155  }
1156 
1157  retval = dap_run(dap);
1158  if (retval != ERROR_OK)
1159  return retval;
1160 
1161  if (!is_64bit_ap(ap))
1162  baseptr_upper = 0;
1163  *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1164 
1165  return ERROR_OK;
1166 }
1167 
1168 int adiv6_dap_read_baseptr(struct command_invocation *cmd, struct adiv5_dap *dap, uint64_t *baseptr)
1169 {
1170  uint32_t baseptr_lower, baseptr_upper = 0;
1171  int retval;
1172 
1173  if (dap->asize > 32) {
1174  retval = dap_queue_dp_read(dap, DP_BASEPTR1, &baseptr_upper);
1175  if (retval != ERROR_OK)
1176  return retval;
1177  }
1178 
1179  retval = dap_dp_read_atomic(dap, DP_BASEPTR0, &baseptr_lower);
1180  if (retval != ERROR_OK)
1181  return retval;
1182 
1183  if ((baseptr_lower & DP_BASEPTR0_VALID) != DP_BASEPTR0_VALID) {
1184  command_print(cmd, "System root table not present");
1185  return ERROR_FAIL;
1186  }
1187 
1188  baseptr_lower &= ~0x0fff;
1189  *baseptr = (((uint64_t)baseptr_upper) << 32) | baseptr_lower;
1190 
1191  return ERROR_OK;
1192 }
1193 
1203 };
1204 
1207  struct adiv5_ap *ap;
1209  uint64_t pid;
1210  uint32_t cid;
1211  uint32_t devarch;
1212  uint32_t devid;
1215 };
1216 
1230  uint64_t component_base, unsigned int reg, uint32_t *value)
1231 {
1232  if (mode == CS_ACCESS_AP)
1233  return dap_queue_ap_read(ap, reg, value);
1234 
1235  /* mode == CS_ACCESS_MEM_AP */
1236  return mem_ap_read_u32(ap, component_base + reg, value);
1237 }
1238 
1250  target_addr_t component_base, struct cs_component_vals *v)
1251 {
1252  assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1253  assert(ap && v);
1254 
1255  uint32_t cid0, cid1, cid2, cid3;
1256  uint32_t pid0, pid1, pid2, pid3, pid4;
1257  int retval = ERROR_OK;
1258 
1259  v->ap = ap;
1260  v->component_base = component_base;
1261  v->mode = mode;
1262 
1263  /* sort by offset to gain speed */
1264 
1265  /*
1266  * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1267  * only, but are at offset above 0xf00, so can be read on any device
1268  * without triggering error. Read them for eventual use on Class 0x9.
1269  */
1270  if (retval == ERROR_OK)
1271  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_C9_DEVARCH, &v->devarch);
1272 
1273  if (retval == ERROR_OK)
1274  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_C9_DEVID, &v->devid);
1275 
1276  /* Same address as ARM_CS_C1_MEMTYPE */
1277  if (retval == ERROR_OK)
1278  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1279 
1280  if (retval == ERROR_OK)
1281  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_PIDR4, &pid4);
1282 
1283  if (retval == ERROR_OK)
1284  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_PIDR0, &pid0);
1285  if (retval == ERROR_OK)
1286  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_PIDR1, &pid1);
1287  if (retval == ERROR_OK)
1288  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_PIDR2, &pid2);
1289  if (retval == ERROR_OK)
1290  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_PIDR3, &pid3);
1291 
1292  if (retval == ERROR_OK)
1293  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_CIDR0, &cid0);
1294  if (retval == ERROR_OK)
1295  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_CIDR1, &cid1);
1296  if (retval == ERROR_OK)
1297  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_CIDR2, &cid2);
1298  if (retval == ERROR_OK)
1299  retval = dap_queue_read_reg(mode, ap, component_base, ARM_CS_CIDR3, &cid3);
1300 
1301  if (retval == ERROR_OK)
1302  retval = dap_run(ap->dap);
1303  if (retval != ERROR_OK) {
1304  LOG_DEBUG("Failed read CoreSight registers");
1305  return retval;
1306  }
1307 
1308  v->cid = (cid3 & 0xff) << 24
1309  | (cid2 & 0xff) << 16
1310  | (cid1 & 0xff) << 8
1311  | (cid0 & 0xff);
1312  v->pid = (uint64_t)(pid4 & 0xff) << 32
1313  | (pid3 & 0xff) << 24
1314  | (pid2 & 0xff) << 16
1315  | (pid1 & 0xff) << 8
1316  | (pid0 & 0xff);
1317 
1318  return ERROR_OK;
1319 }
1320 
1321 /* Part number interpretations are from Cortex
1322  * core specs, the CoreSight components TRM
1323  * (ARM DDI 0314H), CoreSight System Design
1324  * Guide (ARM DGI 0012D) and ETM specs; also
1325  * from chip observation (e.g. TI SDTI).
1326  */
1327 
1328 static const struct dap_part_nums {
1329  uint16_t designer_id;
1330  uint16_t part_num;
1331  const char *type;
1332  const char *full;
1333 } dap_part_nums[] = {
1334  { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1335  { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1336  { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1337  { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1338  { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1339  { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1340  { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1341  { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1342  { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1343  { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1344  { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1345  { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1346  { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1347  { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1348  { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1349  { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1350  { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1351  { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1352  { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1353  { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1354  { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1355  { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1356  { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1357  { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1358  { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1359  { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1360  { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1361  { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1362  { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1363  { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1364  { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1365  { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1366  { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1367  { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1368  { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1369  { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1370  { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1371  { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1372  { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1373  { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1374  { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1375  { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1376  { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1377  { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1378  { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1379  { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1380  { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1381  { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1382  { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1383  { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1384  { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1385  { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1386  { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1387  { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1388  { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1389  { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1390  { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1391  { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1392  { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1393  { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1394  { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1395  { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1396  { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1397  { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1398  { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1399  { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1400  { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1401  { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1402  { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1403  { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1404  { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1405  { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1406  { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1407  { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1408  { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1409  { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1410  { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1411  { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1412  { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1413  { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1414  { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1415  { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1416  { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1417  { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1418  { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1419  { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1420  { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1421  { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1422  { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1423  { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1424  { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1425  { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1426  { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1427  { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1428  { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1429  { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1430  { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1431  { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1432  { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1433  { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1434  { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1435  { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1436  { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1437  { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1438  { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1439  { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1440  { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1441  { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1442  { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1443  { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1444  { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1445  { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1446  { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1447  { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1448  { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1449  { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1450  { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1451  { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1452  { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1453  { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1454  { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1455  { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1456  { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1457  { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1458 };
1459 
1460 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1461 {
1462  static const struct dap_part_nums unknown = {
1463  .type = "Unrecognized",
1464  .full = "",
1465  };
1466 
1467  for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1469  return &dap_part_nums[i];
1470 
1471  return &unknown;
1472 }
1473 
1474 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1475 {
1476  const char *major = "Reserved", *subtype = "Reserved";
1477  const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1478  const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1479  switch (devtype_major) {
1480  case 0:
1481  major = "Miscellaneous";
1482  switch (minor) {
1483  case 0:
1484  subtype = "other";
1485  break;
1486  case 4:
1487  subtype = "Validation component";
1488  break;
1489  }
1490  break;
1491  case 1:
1492  major = "Trace Sink";
1493  switch (minor) {
1494  case 0:
1495  subtype = "other";
1496  break;
1497  case 1:
1498  subtype = "Port";
1499  break;
1500  case 2:
1501  subtype = "Buffer";
1502  break;
1503  case 3:
1504  subtype = "Router";
1505  break;
1506  }
1507  break;
1508  case 2:
1509  major = "Trace Link";
1510  switch (minor) {
1511  case 0:
1512  subtype = "other";
1513  break;
1514  case 1:
1515  subtype = "Funnel, router";
1516  break;
1517  case 2:
1518  subtype = "Filter";
1519  break;
1520  case 3:
1521  subtype = "FIFO, buffer";
1522  break;
1523  }
1524  break;
1525  case 3:
1526  major = "Trace Source";
1527  switch (minor) {
1528  case 0:
1529  subtype = "other";
1530  break;
1531  case 1:
1532  subtype = "Processor";
1533  break;
1534  case 2:
1535  subtype = "DSP";
1536  break;
1537  case 3:
1538  subtype = "Engine/Coprocessor";
1539  break;
1540  case 4:
1541  subtype = "Bus";
1542  break;
1543  case 6:
1544  subtype = "Software";
1545  break;
1546  }
1547  break;
1548  case 4:
1549  major = "Debug Control";
1550  switch (minor) {
1551  case 0:
1552  subtype = "other";
1553  break;
1554  case 1:
1555  subtype = "Trigger Matrix";
1556  break;
1557  case 2:
1558  subtype = "Debug Auth";
1559  break;
1560  case 3:
1561  subtype = "Power Requestor";
1562  break;
1563  }
1564  break;
1565  case 5:
1566  major = "Debug Logic";
1567  switch (minor) {
1568  case 0:
1569  subtype = "other";
1570  break;
1571  case 1:
1572  subtype = "Processor";
1573  break;
1574  case 2:
1575  subtype = "DSP";
1576  break;
1577  case 3:
1578  subtype = "Engine/Coprocessor";
1579  break;
1580  case 4:
1581  subtype = "Bus";
1582  break;
1583  case 5:
1584  subtype = "Memory";
1585  break;
1586  }
1587  break;
1588  case 6:
1589  major = "Performance Monitor";
1590  switch (minor) {
1591  case 0:
1592  subtype = "other";
1593  break;
1594  case 1:
1595  subtype = "Processor";
1596  break;
1597  case 2:
1598  subtype = "DSP";
1599  break;
1600  case 3:
1601  subtype = "Engine/Coprocessor";
1602  break;
1603  case 4:
1604  subtype = "Bus";
1605  break;
1606  case 5:
1607  subtype = "Memory";
1608  break;
1609  }
1610  break;
1611  }
1612  command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1613  devtype & ARM_CS_C9_DEVTYPE_MASK,
1614  major, subtype);
1615  return ERROR_OK;
1616 }
1617 
1621 struct rtp_ops {
1629  int (*ap_header)(struct adiv5_ap *ap, int depth, void *priv);
1640  int (*mem_ap_header)(int retval, struct adiv5_ap *ap, uint64_t dbgbase,
1641  uint32_t apid, int depth, void *priv);
1651  int (*cs_component)(int retval, struct cs_component_vals *v, int depth, void *priv);
1662  int (*rom_table_entry)(int retval, int depth, unsigned int offset, uint64_t romentry,
1663  void *priv);
1667  void *priv;
1668 };
1669 
1673 static int rtp_ops_ap_header(const struct rtp_ops *ops,
1674  struct adiv5_ap *ap, int depth)
1675 {
1676  if (ops->ap_header)
1677  return ops->ap_header(ap, depth, ops->priv);
1678 
1679  return ERROR_OK;
1680 }
1681 
1686 static int rtp_ops_mem_ap_header(const struct rtp_ops *ops,
1687  int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid, int depth)
1688 {
1689  if (!ops->mem_ap_header)
1690  return retval;
1691 
1692  int retval1 = ops->mem_ap_header(retval, ap, dbgbase, apid, depth, ops->priv);
1693  if (retval != ERROR_OK)
1694  return retval;
1695  return retval1;
1696 }
1697 
1702 static int rtp_ops_cs_component(const struct rtp_ops *ops,
1703  int retval, struct cs_component_vals *v, int depth)
1704 {
1705  if (!ops->cs_component)
1706  return retval;
1707 
1708  int retval1 = ops->cs_component(retval, v, depth, ops->priv);
1709  if (retval != ERROR_OK)
1710  return retval;
1711  return retval1;
1712 }
1713 
1718 static int rtp_ops_rom_table_entry(const struct rtp_ops *ops,
1719  int retval, int depth, unsigned int offset, uint64_t romentry)
1720 {
1721  if (!ops->rom_table_entry)
1722  return retval;
1723 
1724  int retval1 = ops->rom_table_entry(retval, depth, offset, romentry, ops->priv);
1725  if (retval != ERROR_OK)
1726  return retval;
1727  return retval1;
1728 }
1729 
1730 /* Broken ROM tables can have circular references. Stop after a while */
1731 #define ROM_TABLE_MAX_DEPTH (16)
1732 
1739 #define CORESIGHT_COMPONENT_FOUND (1)
1740 
1741 static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap, int depth);
1742 static int rtp_cs_component(enum coresight_access_mode mode, const struct rtp_ops *ops,
1743  struct adiv5_ap *ap, target_addr_t dbgbase, bool *is_mem_ap, int depth);
1744 
1745 static int rtp_rom_loop(enum coresight_access_mode mode, const struct rtp_ops *ops,
1746  struct adiv5_ap *ap, target_addr_t base_address, int depth,
1747  unsigned int width, unsigned int max_entries)
1748 {
1749  /* ADIv6 AP ROM table provide offset from current AP */
1750  if (mode == CS_ACCESS_AP)
1751  base_address = ap->ap_num;
1752 
1753  assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1754 
1755  unsigned int offset = 0;
1756  while (max_entries--) {
1757  uint64_t romentry;
1758  uint32_t romentry_low, romentry_high;
1760  unsigned int saved_offset = offset;
1761 
1762  int retval = dap_queue_read_reg(mode, ap, base_address, offset, &romentry_low);
1763  offset += 4;
1764  if (retval == ERROR_OK && width == 64) {
1765  retval = dap_queue_read_reg(mode, ap, base_address, offset, &romentry_high);
1766  offset += 4;
1767  }
1768  if (retval == ERROR_OK)
1769  retval = dap_run(ap->dap);
1770  if (retval != ERROR_OK) {
1771  LOG_DEBUG("Failed read ROM table entry");
1772  return retval;
1773  }
1774 
1775  if (width == 64) {
1776  romentry = (((uint64_t)romentry_high) << 32) | romentry_low;
1777  component_base = base_address +
1778  ((((uint64_t)romentry_high) << 32) | (romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK));
1779  } else {
1780  romentry = romentry_low;
1781  /* "romentry" is signed */
1782  component_base = base_address + (int32_t)(romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK);
1783  if (!is_64bit_ap(ap))
1784  component_base = (uint32_t)component_base;
1785  }
1786  retval = rtp_ops_rom_table_entry(ops, retval, depth, saved_offset, romentry);
1787  if (retval != ERROR_OK)
1788  return retval;
1789 
1790  if (romentry == 0) {
1791  /* End of ROM table */
1792  break;
1793  }
1794 
1795  if (!(romentry & ARM_CS_ROMENTRY_PRESENT))
1796  continue;
1797 
1798  /* Recurse */
1799  if (mode == CS_ACCESS_AP) {
1800  struct adiv5_ap *next_ap = dap_get_ap(ap->dap, component_base);
1801  if (!next_ap) {
1802  LOG_DEBUG("Wrong AP # 0x%" PRIx64, component_base);
1803  continue;
1804  }
1805  retval = rtp_ap(ops, next_ap, depth + 1);
1806  dap_put_ap(next_ap);
1807  } else {
1808  /* mode == CS_ACCESS_MEM_AP */
1809  retval = rtp_cs_component(mode, ops, ap, component_base, NULL, depth + 1);
1810  }
1811  if (retval == CORESIGHT_COMPONENT_FOUND)
1813  if (retval != ERROR_OK) {
1814  /* TODO: do we need to send an ABORT before continuing? */
1815  LOG_DEBUG("Ignore error parsing CoreSight component");
1816  continue;
1817  }
1818  }
1819 
1820  return ERROR_OK;
1821 }
1822 
1823 static int rtp_cs_component(enum coresight_access_mode mode, const struct rtp_ops *ops,
1824  struct adiv5_ap *ap, target_addr_t base_address, bool *is_mem_ap, int depth)
1825 {
1826  struct cs_component_vals v;
1827  int retval;
1828 
1829  assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1830 
1831  if (is_mem_ap)
1832  *is_mem_ap = false;
1833 
1834  if (depth > ROM_TABLE_MAX_DEPTH)
1835  retval = ERROR_FAIL;
1836  else
1837  retval = rtp_read_cs_regs(mode, ap, base_address, &v);
1838 
1839  retval = rtp_ops_cs_component(ops, retval, &v, depth);
1840  if (retval == CORESIGHT_COMPONENT_FOUND)
1842  if (retval != ERROR_OK)
1843  return ERROR_OK; /* Don't abort recursion */
1844 
1845  if (!is_valid_arm_cs_cidr(v.cid))
1846  return ERROR_OK; /* Don't abort recursion */
1847 
1848  const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1849 
1850  if (class == ARM_CS_CLASS_0X1_ROM_TABLE)
1851  return rtp_rom_loop(mode, ops, ap, base_address, depth, 32, 960);
1852 
1853  if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1854  if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1855  return ERROR_OK;
1856 
1857  if (is_mem_ap) {
1858  if ((v.devarch & DEVARCH_ID_MASK) == DEVARCH_MEM_AP)
1859  *is_mem_ap = true;
1860 
1861  /* SoC-600 APv1 Adapter */
1864  ARM_CS_PIDR_PART(v.pid) == 0x9e5)
1865  *is_mem_ap = true;
1866  }
1867 
1868  /* quit if not ROM table */
1870  return ERROR_OK;
1871 
1873  return rtp_rom_loop(mode, ops, ap, base_address, depth, 64, 256);
1874  else
1875  return rtp_rom_loop(mode, ops, ap, base_address, depth, 32, 512);
1876  }
1877 
1878  /* Class other than 0x1 and 0x9 */
1879  return ERROR_OK;
1880 }
1881 
1882 static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap, int depth)
1883 {
1884  uint32_t apid;
1885  target_addr_t dbgbase, invalid_entry;
1886 
1887  int retval = rtp_ops_ap_header(ops, ap, depth);
1888  if (retval != ERROR_OK || depth > ROM_TABLE_MAX_DEPTH)
1889  return ERROR_OK; /* Don't abort recursion */
1890 
1891  if (is_adiv6(ap->dap)) {
1892  bool is_mem_ap;
1893  retval = rtp_cs_component(CS_ACCESS_AP, ops, ap, 0, &is_mem_ap, depth);
1894  if (retval == CORESIGHT_COMPONENT_FOUND)
1896  if (retval != ERROR_OK)
1897  return ERROR_OK; /* Don't abort recursion */
1898 
1899  if (!is_mem_ap)
1900  return ERROR_OK;
1901  /* Continue for an ADIv6 MEM-AP or SoC-600 APv1 Adapter */
1902  }
1903 
1904  /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1905  retval = dap_get_debugbase(ap, &dbgbase, &apid);
1906  if (retval != ERROR_OK)
1907  return retval;
1908  retval = rtp_ops_mem_ap_header(ops, retval, ap, dbgbase, apid, depth);
1909  if (retval != ERROR_OK)
1910  return retval;
1911 
1912  if (apid == 0)
1913  return ERROR_FAIL;
1914 
1915  /* NOTE: a MEM-AP may have a single CoreSight component that's
1916  * not a ROM table ... or have no such components at all.
1917  */
1918  const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1919 
1920  if (class == AP_REG_IDR_CLASS_MEM_AP) {
1921  if (is_64bit_ap(ap))
1922  invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1923  else
1924  invalid_entry = 0xFFFFFFFFul;
1925 
1926  if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2) {
1927  retval = rtp_cs_component(CS_ACCESS_MEM_AP, ops, ap,
1928  dbgbase & 0xFFFFFFFFFFFFF000ull, NULL, depth);
1929  if (retval == CORESIGHT_COMPONENT_FOUND)
1931  }
1932  }
1933 
1934  return ERROR_OK;
1935 }
1936 
1937 /* Actions for command "dap info" */
1938 
1939 static int dap_info_ap_header(struct adiv5_ap *ap, int depth, void *priv)
1940 {
1941  struct command_invocation *cmd = priv;
1942 
1943  if (depth > ROM_TABLE_MAX_DEPTH) {
1944  command_print(cmd, "\tTables too deep");
1945  return ERROR_FAIL;
1946  }
1947 
1948  command_print(cmd, "%sAP # 0x%" PRIx64, (depth) ? "\t\t" : "", ap->ap_num);
1949  return ERROR_OK;
1950 }
1951 
1952 static int dap_info_mem_ap_header(int retval, struct adiv5_ap *ap,
1953  target_addr_t dbgbase, uint32_t apid, int depth, void *priv)
1954 {
1955  struct command_invocation *cmd = priv;
1956  target_addr_t invalid_entry;
1957  char tabs[17] = "";
1958 
1959  if (retval != ERROR_OK) {
1960  command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1961  return retval;
1962  }
1963 
1964  if (depth > ROM_TABLE_MAX_DEPTH) {
1965  command_print(cmd, "\tTables too deep");
1966  return ERROR_FAIL;
1967  }
1968 
1969  if (depth)
1970  snprintf(tabs, sizeof(tabs), "\t[L%02d] ", depth);
1971 
1972  command_print(cmd, "\t\tAP ID register 0x%8.8" PRIx32, apid);
1973  if (apid == 0) {
1974  command_print(cmd, "\t\tNo AP found at this AP#0x%" PRIx64, ap->ap_num);
1975  return ERROR_FAIL;
1976  }
1977 
1978  command_print(cmd, "\t\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1979 
1980  /* NOTE: a MEM-AP may have a single CoreSight component that's
1981  * not a ROM table ... or have no such components at all.
1982  */
1983  const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1984 
1985  if (class == AP_REG_IDR_CLASS_MEM_AP) {
1986  if (is_64bit_ap(ap))
1987  invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1988  else
1989  invalid_entry = 0xFFFFFFFFul;
1990 
1991  command_print(cmd, "%sMEM-AP BASE " TARGET_ADDR_FMT, tabs, dbgbase);
1992 
1993  if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1994  command_print(cmd, "\t\tNo ROM table present");
1995  } else {
1996  if (dbgbase & 0x01)
1997  command_print(cmd, "\t\tValid ROM table present");
1998  else
1999  command_print(cmd, "\t\tROM table in legacy format");
2000  }
2001  }
2002 
2003  return ERROR_OK;
2004 }
2005 
2006 static int dap_info_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
2007 {
2008  struct command_invocation *cmd = priv;
2009 
2010  if (depth > ROM_TABLE_MAX_DEPTH) {
2011  command_print(cmd, "\tTables too deep");
2012  return ERROR_FAIL;
2013  }
2014 
2015  if (v->mode == CS_ACCESS_MEM_AP)
2016  command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, v->component_base);
2017 
2018  if (retval != ERROR_OK) {
2019  command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
2020  return retval;
2021  }
2022 
2023  if (!is_valid_arm_cs_cidr(v->cid)) {
2024  command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v->cid);
2025  return ERROR_OK; /* Don't abort recursion */
2026  }
2027 
2028  /* component may take multiple 4K pages */
2029  uint32_t size = ARM_CS_PIDR_SIZE(v->pid);
2030  if (size > 0)
2031  command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, v->component_base - 0x1000 * size);
2032 
2033  command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v->pid);
2034 
2035  const unsigned int part_num = ARM_CS_PIDR_PART(v->pid);
2036  unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v->pid);
2037 
2038  if (v->pid & ARM_CS_PIDR_JEDEC) {
2039  /* JEP106 code */
2040  command_print(cmd, "\t\tDesigner is 0x%03x, %s",
2041  designer_id, jep106_manufacturer(designer_id));
2042  } else {
2043  /* Legacy ASCII ID, clear invalid bits */
2044  designer_id &= 0x7f;
2045  command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
2046  designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
2047  }
2048 
2049  const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
2050  command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
2051 
2052  const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
2053  command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
2054 
2055  if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
2057  command_print(cmd, "\t\tMEMTYPE system memory present on bus");
2058  else
2059  command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
2060  return ERROR_OK;
2061  }
2062 
2063  if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
2065 
2066  /* REVISIT also show ARM_CS_C9_DEVID */
2067 
2068  if ((v->devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
2069  return ERROR_OK;
2070 
2071  unsigned int architect_id = ARM_CS_C9_DEVARCH_ARCHITECT(v->devarch);
2072  unsigned int revision = ARM_CS_C9_DEVARCH_REVISION(v->devarch);
2073  command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v->devarch,
2075  revision);
2076 
2077  if ((v->devarch & DEVARCH_ID_MASK) == DEVARCH_ROM_C_0X9) {
2078  command_print(cmd, "\t\tType is ROM table");
2079 
2081  command_print(cmd, "\t\tMEMTYPE system memory present on bus");
2082  else
2083  command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
2084  }
2085  return ERROR_OK;
2086  }
2087 
2088  /* Class other than 0x1 and 0x9 */
2089  return ERROR_OK;
2090 }
2091 
2092 static int dap_info_rom_table_entry(int retval, int depth,
2093  unsigned int offset, uint64_t romentry, void *priv)
2094 {
2095  struct command_invocation *cmd = priv;
2096  char tabs[16] = "";
2097 
2098  if (depth)
2099  snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
2100 
2101  if (retval != ERROR_OK) {
2102  command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, offset);
2103  command_print(cmd, "\t\tUnable to continue");
2104  command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
2105  return retval;
2106  }
2107 
2108  command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx64,
2109  tabs, offset, romentry);
2110 
2111  if (romentry == 0) {
2112  command_print(cmd, "\t%s\tEnd of ROM table", tabs);
2113  return ERROR_OK;
2114  }
2115 
2116  if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
2117  command_print(cmd, "\t\tComponent not present");
2118  return ERROR_OK;
2119  }
2120 
2121  return ERROR_OK;
2122 }
2123 
2125 {
2126  struct rtp_ops dap_info_ops = {
2128  .mem_ap_header = dap_info_mem_ap_header,
2129  .cs_component = dap_info_cs_component,
2130  .rom_table_entry = dap_info_rom_table_entry,
2131  .priv = cmd,
2132  };
2133 
2134  return rtp_ap(&dap_info_ops, ap, 0);
2135 }
2136 
2137 /* Actions for dap_lookup_cs_component() */
2138 
2140  /* input */
2141  unsigned int idx;
2142  unsigned int type;
2143  /* output */
2144  uint64_t component_base;
2145  uint64_t ap_num;
2146 };
2147 
2149  struct cs_component_vals *v, int depth, void *priv)
2150 {
2151  struct dap_lookup_data *lookup = priv;
2152 
2153  if (retval != ERROR_OK)
2154  return retval;
2155 
2156  if (!is_valid_arm_cs_cidr(v->cid))
2157  return ERROR_OK;
2158 
2159  const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
2160  if (class != ARM_CS_CLASS_0X9_CS_COMPONENT)
2161  return ERROR_OK;
2162 
2163  if ((v->devtype_memtype & ARM_CS_C9_DEVTYPE_MASK) != lookup->type)
2164  return ERROR_OK;
2165 
2166  if (lookup->idx) {
2167  /* search for next one */
2168  --lookup->idx;
2169  return ERROR_OK;
2170  }
2171 
2172  /* Found! */
2173  lookup->component_base = v->component_base;
2174  lookup->ap_num = v->ap->ap_num;
2176 }
2177 
2178 int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type,
2179  target_addr_t *addr, int32_t core_id)
2180 {
2181  struct dap_lookup_data lookup = {
2182  .type = type,
2183  .idx = core_id,
2184  };
2185  struct rtp_ops dap_lookup_cs_component_ops = {
2186  .ap_header = NULL,
2187  .mem_ap_header = NULL,
2188  .cs_component = dap_lookup_cs_component_cs_component,
2189  .rom_table_entry = NULL,
2190  .priv = &lookup,
2191  };
2192 
2193  int retval = rtp_ap(&dap_lookup_cs_component_ops, ap, 0);
2194  if (retval == CORESIGHT_COMPONENT_FOUND) {
2195  if (lookup.ap_num != ap->ap_num) {
2196  /* TODO: handle search from root ROM table */
2197  LOG_DEBUG("CS lookup ended in AP # 0x%" PRIx64 ". Ignore it", lookup.ap_num);
2199  }
2200  LOG_DEBUG("CS lookup found at 0x%" PRIx64, lookup.component_base);
2201  *addr = lookup.component_base;
2202  return ERROR_OK;
2203  }
2204  if (retval != ERROR_OK) {
2205  LOG_DEBUG("CS lookup error %d", retval);
2206  return retval;
2207  }
2208  LOG_DEBUG("CS lookup not found");
2210 }
2211 
2216  CFG_CTIBASE, /* DEPRECATED */
2217 };
2218 
2219 static const struct jim_nvp nvp_config_opts[] = {
2220  { .name = "-dap", .value = CFG_DAP },
2221  { .name = "-ap-num", .value = CFG_AP_NUM },
2222  { .name = "-baseaddr", .value = CFG_BASEADDR },
2223  { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
2224  { .name = NULL, .value = -1 }
2225 };
2226 
2228  struct adiv5_dap **dap_p, uint64_t *ap_num_p, uint32_t *base_p)
2229 {
2230  assert(dap_p && ap_num_p);
2231 
2232  if (!goi->argc)
2233  return JIM_OK;
2234 
2235  Jim_SetEmptyResult(goi->interp);
2236 
2237  struct jim_nvp *n;
2239  goi->argv[0], &n);
2240  if (e != JIM_OK)
2241  return JIM_CONTINUE;
2242 
2243  /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
2244  if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
2245  return JIM_CONTINUE;
2246 
2247  e = jim_getopt_obj(goi, NULL);
2248  if (e != JIM_OK)
2249  return e;
2250 
2251  switch (n->value) {
2252  case CFG_DAP:
2253  if (goi->isconfigure) {
2254  Jim_Obj *o_t;
2255  struct adiv5_dap *dap;
2256  e = jim_getopt_obj(goi, &o_t);
2257  if (e != JIM_OK)
2258  return e;
2259  dap = dap_instance_by_jim_obj(goi->interp, o_t);
2260  if (!dap) {
2261  Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
2262  return JIM_ERR;
2263  }
2264  if (*dap_p && *dap_p != dap) {
2265  Jim_SetResultString(goi->interp,
2266  "DAP assignment cannot be changed!", -1);
2267  return JIM_ERR;
2268  }
2269  *dap_p = dap;
2270  } else {
2271  if (goi->argc)
2272  goto err_no_param;
2273  if (!*dap_p) {
2274  Jim_SetResultString(goi->interp, "DAP not configured", -1);
2275  return JIM_ERR;
2276  }
2277  Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
2278  }
2279  break;
2280 
2281  case CFG_AP_NUM:
2282  if (goi->isconfigure) {
2283  /* jim_wide is a signed 64 bits int, ap_num is unsigned with max 52 bits */
2284  jim_wide ap_num;
2285  e = jim_getopt_wide(goi, &ap_num);
2286  if (e != JIM_OK)
2287  return e;
2288  /* we still don't know dap->adi_version */
2289  if (ap_num < 0 || (ap_num > DP_APSEL_MAX && (ap_num & 0xfff))) {
2290  Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
2291  return JIM_ERR;
2292  }
2293  *ap_num_p = ap_num;
2294  } else {
2295  if (goi->argc)
2296  goto err_no_param;
2297  if (*ap_num_p == DP_APSEL_INVALID) {
2298  Jim_SetResultString(goi->interp, "AP number not configured", -1);
2299  return JIM_ERR;
2300  }
2301  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
2302  }
2303  break;
2304 
2305  case CFG_CTIBASE:
2306  LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
2307  /* fall through */
2308  case CFG_BASEADDR:
2309  if (goi->isconfigure) {
2310  jim_wide base;
2311  e = jim_getopt_wide(goi, &base);
2312  if (e != JIM_OK)
2313  return e;
2314  *base_p = (uint32_t)base;
2315  } else {
2316  if (goi->argc)
2317  goto err_no_param;
2318  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
2319  }
2320  break;
2321  };
2322 
2323  return JIM_OK;
2324 
2325 err_no_param:
2326  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
2327  return JIM_ERR;
2328 }
2329 
2331 {
2332  struct adiv5_private_config *pc;
2333  int e;
2334 
2335  pc = (struct adiv5_private_config *)target->private_config;
2336  if (!pc) {
2337  pc = calloc(1, sizeof(struct adiv5_private_config));
2338  if (!pc) {
2339  LOG_ERROR("Out of memory");
2340  return JIM_ERR;
2341  }
2342  pc->ap_num = DP_APSEL_INVALID;
2343  target->private_config = pc;
2344  }
2345 
2346  target->has_dap = true;
2347 
2348  e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
2349  if (e != JIM_OK)
2350  return e;
2351 
2352  if (pc->dap && !target->dap_configured) {
2353  if (target->tap_configured) {
2354  pc->dap = NULL;
2355  Jim_SetResultString(goi->interp,
2356  "-chain-position and -dap configparams are mutually exclusive!", -1);
2357  return JIM_ERR;
2358  }
2359  target->tap = pc->dap->tap;
2360  target->dap_configured = true;
2361  }
2362 
2363  return JIM_OK;
2364 }
2365 
2367 {
2368  if (!pc)
2369  return ERROR_FAIL;
2370 
2371  if (!pc->dap)
2372  return ERROR_FAIL;
2373 
2374  return ERROR_OK;
2375 }
2376 
2378  struct jim_getopt_info *goi)
2379 {
2380  return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
2381 }
2382 
2384 {
2385  p->dap = NULL;
2386  p->ap_num = DP_APSEL_INVALID;
2387  p->base = 0;
2388  return ERROR_OK;
2389 }
2390 
2391 COMMAND_HANDLER(handle_dap_info_command)
2392 {
2393  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2394  uint64_t apsel;
2395 
2396  switch (CMD_ARGC) {
2397  case 0:
2398  apsel = dap->apsel;
2399  break;
2400  case 1:
2401  if (!strcmp(CMD_ARGV[0], "root")) {
2402  if (!is_adiv6(dap)) {
2403  command_print(CMD, "Option \"root\" not allowed with ADIv5 DAP");
2405  }
2406  int retval = adiv6_dap_read_baseptr(CMD, dap, &apsel);
2407  if (retval != ERROR_OK) {
2408  command_print(CMD, "Failed reading DAP baseptr");
2409  return retval;
2410  }
2411  break;
2412  }
2414  if (!is_ap_num_valid(dap, apsel)) {
2415  command_print(CMD, "Invalid AP number");
2417  }
2418  break;
2419  default:
2421  }
2422 
2423  struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2424  if (!ap) {
2425  command_print(CMD, "Cannot get AP");
2426  return ERROR_FAIL;
2427  }
2428 
2429  int retval = dap_info_command(CMD, ap);
2430  dap_put_ap(ap);
2431  return retval;
2432 }
2433 
2434 COMMAND_HANDLER(dap_baseaddr_command)
2435 {
2436  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2437  uint64_t apsel;
2438  uint32_t baseaddr_lower, baseaddr_upper;
2439  struct adiv5_ap *ap;
2440  target_addr_t baseaddr;
2441  int retval;
2442 
2443  baseaddr_upper = 0;
2444 
2445  switch (CMD_ARGC) {
2446  case 0:
2447  apsel = dap->apsel;
2448  break;
2449  case 1:
2450  COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], apsel);
2451  if (!is_ap_num_valid(dap, apsel)) {
2452  command_print(CMD, "Invalid AP number");
2454  }
2455  break;
2456  default:
2458  }
2459 
2460  /* NOTE: assumes we're talking to a MEM-AP, which
2461  * has a base address. There are other kinds of AP,
2462  * though they're not common for now. This should
2463  * use the ID register to verify it's a MEM-AP.
2464  */
2465 
2466  ap = dap_get_ap(dap, apsel);
2467  if (!ap) {
2468  command_print(CMD, "Cannot get AP");
2469  return ERROR_FAIL;
2470  }
2471 
2472  retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE(dap), &baseaddr_lower);
2473 
2474  if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
2475  retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &ap->cfg_reg);
2476 
2477  if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
2478  /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
2479  retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64(dap), &baseaddr_upper);
2480  }
2481 
2482  if (retval == ERROR_OK)
2483  retval = dap_run(dap);
2484  dap_put_ap(ap);
2485  if (retval != ERROR_OK)
2486  return retval;
2487 
2488  if (is_64bit_ap(ap)) {
2489  baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
2490  command_print(CMD, "0x%016" PRIx64, baseaddr);
2491  } else
2492  command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
2493 
2494  return ERROR_OK;
2495 }
2496 
2497 COMMAND_HANDLER(dap_memaccess_command)
2498 {
2499  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2500  struct adiv5_ap *ap;
2501  uint32_t memaccess_tck;
2502 
2503  switch (CMD_ARGC) {
2504  case 0:
2505  ap = dap_get_ap(dap, dap->apsel);
2506  if (!ap) {
2507  command_print(CMD, "Cannot get AP");
2508  return ERROR_FAIL;
2509  }
2511  break;
2512  case 1:
2513  ap = dap_get_config_ap(dap, dap->apsel);
2514  if (!ap) {
2515  command_print(CMD, "Cannot get AP");
2516  return ERROR_FAIL;
2517  }
2520  break;
2521  default:
2523  }
2524 
2525  dap_put_ap(ap);
2526 
2527  command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
2528  memaccess_tck);
2529 
2530  return ERROR_OK;
2531 }
2532 
2533 COMMAND_HANDLER(dap_apsel_command)
2534 {
2535  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2536  uint64_t apsel;
2537 
2538  switch (CMD_ARGC) {
2539  case 0:
2540  command_print(CMD, "0x%" PRIx64, dap->apsel);
2541  return ERROR_OK;
2542  case 1:
2544  if (!is_ap_num_valid(dap, apsel)) {
2545  command_print(CMD, "Invalid AP number");
2547  }
2548  break;
2549  default:
2551  }
2552 
2553  dap->apsel = apsel;
2554  return ERROR_OK;
2555 }
2556 
2557 COMMAND_HANDLER(dap_apcsw_command)
2558 {
2559  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2560  struct adiv5_ap *ap;
2561  uint32_t csw_val, csw_mask;
2562 
2563  switch (CMD_ARGC) {
2564  case 0:
2565  ap = dap_get_ap(dap, dap->apsel);
2566  if (!ap) {
2567  command_print(CMD, "Cannot get AP");
2568  return ERROR_FAIL;
2569  }
2570  command_print(CMD, "AP#0x%" PRIx64 " selected, csw 0x%8.8" PRIx32,
2571  dap->apsel, ap->csw_default);
2572  break;
2573  case 1:
2574  if (strcmp(CMD_ARGV[0], "default") == 0)
2575  csw_val = CSW_AHB_DEFAULT;
2576  else
2577  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2578 
2579  if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2580  LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2582  }
2583  ap = dap_get_config_ap(dap, dap->apsel);
2584  if (!ap) {
2585  command_print(CMD, "Cannot get AP");
2586  return ERROR_FAIL;
2587  }
2588  ap->csw_default = csw_val;
2589  break;
2590  case 2:
2591  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2592  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2593  if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2594  LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2596  }
2597  ap = dap_get_config_ap(dap, dap->apsel);
2598  if (!ap) {
2599  command_print(CMD, "Cannot get AP");
2600  return ERROR_FAIL;
2601  }
2602  ap->csw_default = (ap->csw_default & ~csw_mask) | (csw_val & csw_mask);
2603  break;
2604  default:
2606  }
2607  dap_put_ap(ap);
2608 
2609  return ERROR_OK;
2610 }
2611 
2612 
2613 
2614 COMMAND_HANDLER(dap_apid_command)
2615 {
2616  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2617  uint64_t apsel;
2618  uint32_t apid;
2619  int retval;
2620 
2621  switch (CMD_ARGC) {
2622  case 0:
2623  apsel = dap->apsel;
2624  break;
2625  case 1:
2627  if (!is_ap_num_valid(dap, apsel)) {
2628  command_print(CMD, "Invalid AP number");
2630  }
2631  break;
2632  default:
2634  }
2635 
2636  struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2637  if (!ap) {
2638  command_print(CMD, "Cannot get AP");
2639  return ERROR_FAIL;
2640  }
2641  retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), &apid);
2642  if (retval != ERROR_OK) {
2643  dap_put_ap(ap);
2644  return retval;
2645  }
2646  retval = dap_run(dap);
2647  dap_put_ap(ap);
2648  if (retval != ERROR_OK)
2649  return retval;
2650 
2651  command_print(CMD, "0x%8.8" PRIx32, apid);
2652 
2653  return retval;
2654 }
2655 
2656 COMMAND_HANDLER(dap_apreg_command)
2657 {
2658  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2659  uint64_t apsel;
2660  uint32_t reg, value;
2661  int retval;
2662 
2663  if (CMD_ARGC < 2 || CMD_ARGC > 3)
2665 
2667  if (!is_ap_num_valid(dap, apsel)) {
2668  command_print(CMD, "Invalid AP number");
2670  }
2671 
2672  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2673  if (is_adiv6(dap)) {
2674  if (reg >= 4096 || (reg & 3)) {
2675  command_print(CMD, "Invalid reg value (should be less than 4096 and 4 bytes aligned)");
2677  }
2678  } else { /* ADI version 5 */
2679  if (reg >= 256 || (reg & 3)) {
2680  command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2682  }
2683  }
2684 
2685  struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2686  if (!ap) {
2687  command_print(CMD, "Cannot get AP");
2688  return ERROR_FAIL;
2689  }
2690 
2691  if (CMD_ARGC == 3) {
2692  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2693  /* see if user supplied register address is a match for the CSW or TAR register */
2694  if (reg == MEM_AP_REG_CSW(dap)) {
2695  ap->csw_value = 0; /* invalid, in case write fails */
2696  retval = dap_queue_ap_write(ap, reg, value);
2697  if (retval == ERROR_OK)
2698  ap->csw_value = value;
2699  } else if (reg == MEM_AP_REG_TAR(dap)) {
2700  retval = dap_queue_ap_write(ap, reg, value);
2701  if (retval == ERROR_OK)
2702  ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2703  else {
2704  /* To track independent writes to TAR and TAR64, two tar_valid flags */
2705  /* should be used. To keep it simple, tar_valid is only invalidated on a */
2706  /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2707  /* if tar_valid is false. */
2708  ap->tar_valid = false;
2709  }
2710  } else if (reg == MEM_AP_REG_TAR64(dap)) {
2711  retval = dap_queue_ap_write(ap, reg, value);
2712  if (retval == ERROR_OK)
2713  ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2714  else {
2715  /* See above comment for the MEM_AP_REG_TAR failed write case */
2716  ap->tar_valid = false;
2717  }
2718  } else {
2719  retval = dap_queue_ap_write(ap, reg, value);
2720  }
2721  } else {
2722  retval = dap_queue_ap_read(ap, reg, &value);
2723  }
2724  if (retval == ERROR_OK)
2725  retval = dap_run(dap);
2726 
2727  dap_put_ap(ap);
2728 
2729  if (retval != ERROR_OK)
2730  return retval;
2731 
2732  if (CMD_ARGC == 2)
2733  command_print(CMD, "0x%08" PRIx32, value);
2734 
2735  return retval;
2736 }
2737 
2738 COMMAND_HANDLER(dap_dpreg_command)
2739 {
2740  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2741  uint32_t reg, value;
2742  int retval;
2743 
2744  if (CMD_ARGC < 1 || CMD_ARGC > 2)
2746 
2747  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2748  if (reg >= 256 || (reg & 3)) {
2749  command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2751  }
2752 
2753  if (CMD_ARGC == 2) {
2754  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2755  retval = dap_queue_dp_write(dap, reg, value);
2756  } else {
2757  retval = dap_queue_dp_read(dap, reg, &value);
2758  }
2759  if (retval == ERROR_OK)
2760  retval = dap_run(dap);
2761 
2762  if (retval != ERROR_OK)
2763  return retval;
2764 
2765  if (CMD_ARGC == 1)
2766  command_print(CMD, "0x%08" PRIx32, value);
2767 
2768  return retval;
2769 }
2770 
2771 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2772 {
2773  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2774  return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2775  "TI BE-32 quirks mode");
2776 }
2777 
2778 COMMAND_HANDLER(dap_nu_npcx_quirks_command)
2779 {
2780  struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2781  return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->nu_npcx_quirks,
2782  "Nuvoton NPCX quirks mode");
2783 }
2784 
2786  {
2787  .name = "info",
2788  .handler = handle_dap_info_command,
2789  .mode = COMMAND_EXEC,
2790  .help = "display ROM table for specified MEM-AP (default currently selected AP) "
2791  "or the ADIv6 root ROM table",
2792  .usage = "[ap_num | 'root']",
2793  },
2794  {
2795  .name = "apsel",
2796  .handler = dap_apsel_command,
2797  .mode = COMMAND_ANY,
2798  .help = "Set the currently selected AP (default 0) "
2799  "and display the result",
2800  .usage = "[ap_num]",
2801  },
2802  {
2803  .name = "apcsw",
2804  .handler = dap_apcsw_command,
2805  .mode = COMMAND_ANY,
2806  .help = "Set CSW default bits",
2807  .usage = "[value [mask]]",
2808  },
2809 
2810  {
2811  .name = "apid",
2812  .handler = dap_apid_command,
2813  .mode = COMMAND_EXEC,
2814  .help = "return ID register from AP "
2815  "(default currently selected AP)",
2816  .usage = "[ap_num]",
2817  },
2818  {
2819  .name = "apreg",
2820  .handler = dap_apreg_command,
2821  .mode = COMMAND_EXEC,
2822  .help = "read/write a register from AP "
2823  "(reg is byte address of a word register, like 0 4 8...)",
2824  .usage = "ap_num reg [value]",
2825  },
2826  {
2827  .name = "dpreg",
2828  .handler = dap_dpreg_command,
2829  .mode = COMMAND_EXEC,
2830  .help = "read/write a register from DP "
2831  "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2832  .usage = "reg [value]",
2833  },
2834  {
2835  .name = "baseaddr",
2836  .handler = dap_baseaddr_command,
2837  .mode = COMMAND_EXEC,
2838  .help = "return debug base address from MEM-AP "
2839  "(default currently selected AP)",
2840  .usage = "[ap_num]",
2841  },
2842  {
2843  .name = "memaccess",
2844  .handler = dap_memaccess_command,
2845  .mode = COMMAND_EXEC,
2846  .help = "set/get number of extra tck for MEM-AP memory "
2847  "bus access [0-255]",
2848  .usage = "[cycles]",
2849  },
2850  {
2851  .name = "ti_be_32_quirks",
2852  .handler = dap_ti_be_32_quirks_command,
2853  .mode = COMMAND_CONFIG,
2854  .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2855  .usage = "[enable]",
2856  },
2857  {
2858  .name = "nu_npcx_quirks",
2859  .handler = dap_nu_npcx_quirks_command,
2860  .mode = COMMAND_CONFIG,
2861  .help = "set/get quirks mode for Nuvoton NPCX controllers",
2862  .usage = "[enable]",
2863  },
2865 };
#define IS_ALIGNED(x, a)
Definition: align.h:22
Holds the interface to ARM cores.
#define DEVARCH_MEM_AP
Definition: arm_adi_v5.c:940
struct adiv5_ap * dap_get_config_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1100
static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address, bool addrinc)
Synchronous write of a block of memory, using a specific access size.
Definition: arm_adi_v5.c:334
static int dap_info_mem_ap_header(int retval, struct adiv5_ap *ap, target_addr_t dbgbase, uint32_t apid, int depth, void *priv)
Definition: arm_adi_v5.c:1952
int mem_ap_read_buf(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:622
static int dap_info_ap_header(struct adiv5_ap *ap, int depth, void *priv)
Definition: arm_adi_v5.c:1939
static int dap_queue_read_reg(enum coresight_access_mode mode, struct adiv5_ap *ap, uint64_t component_base, unsigned int reg, uint32_t *value)
Helper to read CoreSight component's registers, either on the bus behind a MEM-AP or directly in the ...
Definition: arm_adi_v5.c:1229
static const char * class_description[16]
Definition: arm_adi_v5.c:886
static const struct @58 ap_types[]
static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap, int depth)
Definition: arm_adi_v5.c:1882
static const struct jim_nvp nvp_config_opts[]
Definition: arm_adi_v5.c:2219
COMMAND_HANDLER(handle_dap_info_command)
Definition: arm_adi_v5.c:2391
#define DEVARCH_ID_MASK
Definition: arm_adi_v5.c:939
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2178
static int rtp_rom_loop(enum coresight_access_mode mode, const struct rtp_ops *ops, struct adiv5_ap *ap, target_addr_t base_address, int depth, unsigned int width, unsigned int max_entries)
Definition: arm_adi_v5.c:1745
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:634
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
Definition: arm_adi_v5.c:82
static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
Definition: arm_adi_v5.c:109
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2366
#define DEVARCH_UNKNOWN_V2
Definition: arm_adi_v5.c:942
static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
Queue transactions setting up transfer parameters for the currently selected MEM-AP.
Definition: arm_adi_v5.c:207
int dap_info_command(struct command_invocation *cmd, struct adiv5_ap *ap)
Definition: arm_adi_v5.c:2124
int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Asynchronous (queued) read of a word from memory or a system register.
Definition: arm_adi_v5.c:230
static const char * ap_type_to_description(enum ap_type type)
Definition: arm_adi_v5.c:971
int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
Definition: arm_adi_v5.c:2383
static int dap_info_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
Definition: arm_adi_v5.c:2006
static bool is_ap_in_use(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1052
int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Asynchronous (queued) write of a word to memory or a system register.
Definition: arm_adi_v5.c:282
bool is_ap_num_valid(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:980
static int adiv5_jim_spot_configure(struct jim_getopt_info *goi, struct adiv5_dap **dap_p, uint64_t *ap_num_p, uint32_t *base_p)
Definition: arm_adi_v5.c:2227
const char * description
Definition: arm_adi_v5.c:912
enum ap_type type
Definition: arm_adi_v5.c:957
int adiv6_dap_read_baseptr(struct command_invocation *cmd, struct adiv5_dap *dap, uint64_t *baseptr)
Definition: arm_adi_v5.c:1168
static const char * class0x9_devarch_description(uint32_t devarch)
Definition: arm_adi_v5.c:944
uint32_t arch_id
Definition: arm_adi_v5.c:911
static int dap_info_rom_table_entry(int retval, int depth, unsigned int offset, uint64_t romentry, void *priv)
Definition: arm_adi_v5.c:2092
int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2330
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1009
adiv5_cfg_param
Definition: arm_adi_v5.c:2212
@ CFG_AP_NUM
Definition: arm_adi_v5.c:2214
@ CFG_CTIBASE
Definition: arm_adi_v5.c:2216
@ CFG_BASEADDR
Definition: arm_adi_v5.c:2215
@ CFG_DAP
Definition: arm_adi_v5.c:2213
static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
Definition: arm_adi_v5.c:129
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:640
int dap_to_jtag(struct adiv5_dap *dap)
Put the debug link into JTAG mode, if the target supports it.
Definition: arm_adi_v5.c:872
static int rtp_ops_rom_table_entry(const struct rtp_ops *ops, int retval, int depth, unsigned int offset, uint64_t romentry)
Wrapper around struct rtp_ops::rom_table_entry.
Definition: arm_adi_v5.c:1718
int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
Initialize a DAP or do reconnect if DAP is not accessible.
Definition: arm_adi_v5.c:752
static int dap_get_debugbase(struct adiv5_ap *ap, target_addr_t *dbgbase, uint32_t *apid)
Definition: arm_adi_v5.c:1132
int dap_dp_init(struct adiv5_dap *dap)
Initialize a DAP.
Definition: arm_adi_v5.c:675
#define ROM_TABLE_MAX_DEPTH
Definition: arm_adi_v5.c:1731
static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
Definition: arm_adi_v5.c:93
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:259
int dap_to_swd(struct adiv5_dap *dap)
Put the debug link into SWD mode, if the target supports it.
Definition: arm_adi_v5.c:854
#define DAP_POWER_DOMAIN_TIMEOUT
Definition: arm_adi_v5.c:649
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1091
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1111
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:783
static int rtp_ops_mem_ap_header(const struct rtp_ops *ops, int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid, int depth)
Wrapper around struct rtp_ops::mem_ap_header.
Definition: arm_adi_v5.c:1686
coresight_access_mode
Method to access the CoreSight component.
Definition: arm_adi_v5.c:1200
@ CS_ACCESS_MEM_AP
Definition: arm_adi_v5.c:1202
@ CS_ACCESS_AP
Definition: arm_adi_v5.c:1201
int mem_ap_write_buf(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:628
static const struct @57 class0x9_devarch[]
static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
Definition: arm_adi_v5.c:1474
static int rtp_ops_ap_header(const struct rtp_ops *ops, struct adiv5_ap *ap, int depth)
Wrapper around struct rtp_ops::ap_header.
Definition: arm_adi_v5.c:1673
static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t adr, bool addrinc)
Synchronous read of a block of memory, using a specific access size.
Definition: arm_adi_v5.c:484
#define ARCH_ID(architect, archid)
Definition: arm_adi_v5.c:905
void dap_invalidate_cache(struct adiv5_dap *dap)
Invalidate cached DP select and cached TAR and CSW of all APs.
Definition: arm_adi_v5.c:656
static int dap_lookup_cs_component_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
Definition: arm_adi_v5.c:2148
static int rtp_ops_cs_component(const struct rtp_ops *ops, int retval, struct cs_component_vals *v, int depth)
Wrapper around struct rtp_ops::cs_component.
Definition: arm_adi_v5.c:1702
#define DEVARCH_ROM_C_0X9
Definition: arm_adi_v5.c:941
static const struct dap_part_nums * pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
Definition: arm_adi_v5.c:1460
static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:178
const struct command_registration dap_instance_commands[]
Definition: arm_adi_v5.c:2785
static int rtp_read_cs_regs(enum coresight_access_mode mode, struct adiv5_ap *ap, target_addr_t component_base, struct cs_component_vals *v)
Read the CoreSight registers needed during ROM Table Parsing (RTP).
Definition: arm_adi_v5.c:1249
#define CORESIGHT_COMPONENT_FOUND
Value used only during lookup of a CoreSight component in ROM table.
Definition: arm_adi_v5.c:1739
static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:156
static struct adiv5_ap * _dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1057
int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2377
static int rtp_cs_component(enum coresight_access_mode mode, const struct rtp_ops *ops, struct adiv5_ap *ap, target_addr_t dbgbase, bool *is_mem_ap, int depth)
Definition: arm_adi_v5.c:1823
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:311
This defines formats and data structures used to talk to ADIv5 entities.
#define AP_TYPE_MASK
Definition: arm_adi_v5.h:226
#define CSW_ADDRINC_MASK
Definition: arm_adi_v5.h:164
#define MEM_AP_REG_CSW(dap)
Definition: arm_adi_v5.h:141
#define CSW_ADDRINC_PACKED
Definition: arm_adi_v5.h:167
static int dap_queue_ap_write(struct adiv5_ap *ap, unsigned reg, uint32_t data)
Queue an AP register write.
Definition: arm_adi_v5.h:566
#define SSTICKYERR
Definition: arm_adi_v5.h:86
#define CSW_32BIT
Definition: arm_adi_v5.h:163
static bool is_64bit_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.h:467
#define AP_REG_IDR_CLASS_SHIFT
Definition: arm_adi_v5.h:210
#define MEM_AP_REG_CFG(dap)
Definition: arm_adi_v5.h:151
#define CDBGPWRUPREQ
Definition: arm_adi_v5.h:93
ap_type
Definition: arm_adi_v5.h:446
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:450
@ AP_TYPE_AXI_AP
Definition: arm_adi_v5.h:451
@ AP_TYPE_APB4_AP
Definition: arm_adi_v5.h:453
@ AP_TYPE_AHB3_AP
Definition: arm_adi_v5.h:449
@ AP_TYPE_COM_AP
Definition: arm_adi_v5.h:448
@ AP_TYPE_AHB5H_AP
Definition: arm_adi_v5.h:455
@ AP_TYPE_JTAG_AP
Definition: arm_adi_v5.h:447
@ AP_TYPE_AXI5_AP
Definition: arm_adi_v5.h:454
@ AP_TYPE_AHB5_AP
Definition: arm_adi_v5.h:452
static int dap_queue_dp_write(struct adiv5_dap *dap, unsigned reg, uint32_t data)
Queue a DP register write.
Definition: arm_adi_v5.h:529
#define CSW_AHB_DEFAULT
Definition: arm_adi_v5.h:186
#define MEM_AP_REG_TAR(dap)
Definition: arm_adi_v5.h:142
#define MEM_AP_REG_CFG_LD
Definition: arm_adi_v5.h:201
static int dap_queue_dp_read(struct adiv5_dap *dap, unsigned reg, uint32_t *data)
Queue a DP register read.
Definition: arm_adi_v5.h:511
#define CSW_16BIT
Definition: arm_adi_v5.h:162
#define ARM_ID
Definition: arm_adi_v5.h:28
struct adiv5_dap * dap_instance_by_jim_obj(Jim_Interp *interp, Jim_Obj *o)
Definition: arm_dap.c:72
static int dap_send_sequence(struct adiv5_dap *dap, enum swd_special_seq seq)
Send an adi-v5 sequence to the DAP.
Definition: arm_adi_v5.h:492
#define AP_REG_IDR_CLASS_MASK
Definition: arm_adi_v5.h:209
#define CSW_ADDRINC_SINGLE
Definition: arm_adi_v5.h:166
#define AP_REG_IDR_CLASS_MEM_AP
Definition: arm_adi_v5.h:218
static int dap_dp_read_atomic(struct adiv5_dap *dap, unsigned reg, uint32_t *value)
Definition: arm_adi_v5.h:618
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:106
#define MEM_AP_REG_CFG_BE
Definition: arm_adi_v5.h:199
#define DP_CTRL_STAT
Definition: arm_adi_v5.h:50
#define DP_BASEPTR0_VALID
Definition: arm_adi_v5.h:79
#define DP_APSEL_MAX
Definition: arm_adi_v5.h:105
#define CORUNDETECT
Definition: arm_adi_v5.h:82
#define CDBGPWRUPACK
Definition: arm_adi_v5.h:94
struct adiv5_dap * adiv5_get_dap(struct arm_dap_object *obj)
Definition: arm_dap.c:68
#define CSW_8BIT
Definition: arm_adi_v5.h:161
#define DP_SELECT_INVALID
Definition: arm_adi_v5.h:103
#define CSYSPWRUPACK
Definition: arm_adi_v5.h:96
#define MEM_AP_REG_CFG_LA
Definition: arm_adi_v5.h:200
#define MEM_AP_REG_DRW(dap)
Definition: arm_adi_v5.h:144
#define DP_BASEPTR1
Definition: arm_adi_v5.h:49
#define MEM_AP_REG_BASE(dap)
Definition: arm_adi_v5.h:152
#define CSW_ADDRINC_OFF
Definition: arm_adi_v5.h:165
@ JTAG_TO_SWD
Definition: arm_adi_v5.h:231
@ SWD_TO_JTAG
Definition: arm_adi_v5.h:233
static int dap_queue_ap_read(struct adiv5_ap *ap, unsigned reg, uint32_t *data)
Queue an AP register read.
Definition: arm_adi_v5.h:546
#define CSYSPWRUPREQ
Definition: arm_adi_v5.h:95
#define MEM_AP_REG_BASE64(dap)
Definition: arm_adi_v5.h:150
const char * adiv5_dap_name(struct adiv5_dap *self)
Definition: arm_dap.c:56
#define DP_BASEPTR0
Definition: arm_adi_v5.h:48
#define MEM_AP_REG_BD0(dap)
Definition: arm_adi_v5.h:145
#define CSW_SIZE_MASK
Definition: arm_adi_v5.h:160
static bool is_adiv6(const struct adiv5_dap *dap)
Check if DAP is ADIv6.
Definition: arm_adi_v5.h:479
#define MEM_AP_REG_TAR64(dap)
Definition: arm_adi_v5.h:143
static int dap_dp_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value, int timeout)
Definition: arm_adi_v5.h:630
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:604
#define AP_REG_IDR(dap)
Definition: arm_adi_v5.h:157
#define MEM_AP_REG_CFG_INVALID
Definition: arm_adi_v5.h:202
#define ARM_CS_CIDR3
Definition: arm_coresight.h:44
#define ARM_CS_CLASS_0X1_ROM_TABLE
Definition: arm_coresight.h:48
#define ARM_CS_PIDR2
Definition: arm_coresight.h:21
#define ARM_CS_C9_DEVID_SYSMEM_MASK
Definition: arm_coresight.h:76
static bool is_valid_arm_cs_cidr(uint32_t cidr)
Definition: arm_coresight.h:51
#define ARM_CS_C9_DEVTYPE_MASK
Definition: arm_coresight.h:87
#define ARM_CS_PIDR3
Definition: arm_coresight.h:22
#define ARM_CS_PIDR_SIZE(pidr)
Definition: arm_coresight.h:39
#define ARM_CS_CLASS_0X9_CS_COMPONENT
Definition: arm_coresight.h:49
#define ARM_CS_C9_DEVID
Definition: arm_coresight.h:71
#define ARM_CS_CIDR1
Definition: arm_coresight.h:42
#define ARM_CS_C9_DEVARCH
Definition: arm_coresight.h:57
#define ARM_CS_PIDR0
Definition: arm_coresight.h:19
#define ARM_CS_C9_DEVTYPE_SUB_SHIFT
Definition: arm_coresight.h:85
#define ARM_CS_CIDR_CLASS(cidr)
Definition: arm_coresight.h:47
#define ARM_CS_C9_DEVARCH_REVISION(devarch)
Definition: arm_coresight.h:66
#define ARM_CS_ROMENTRY_PRESENT
Definition: arm_coresight.h:97
#define ARM_CS_PIDR4
Definition: arm_coresight.h:23
#define ARM_CS_ALIGN
Definition: arm_coresight.h:16
#define ARM_CS_C9_DEVTYPE_MAJOR_SHIFT
Definition: arm_coresight.h:83
#define ARM_CS_C9_DEVTYPE
Definition: arm_coresight.h:80
#define ARM_CS_C9_DEVTYPE_MAJOR_MASK
Definition: arm_coresight.h:82
#define ARM_CS_C1_MEMTYPE_SYSMEM_MASK
Definition: arm_coresight.h:93
#define ARM_CS_C9_DEVID_FORMAT_MASK
Definition: arm_coresight.h:73
#define ARM_CS_ROMENTRY_OFFSET_MASK
Definition: arm_coresight.h:98
#define ARM_CS_C9_DEVARCH_ARCHITECT(devarch)
Definition: arm_coresight.h:68
#define ARM_CS_PIDR_JEDEC
Definition: arm_coresight.h:38
#define ARM_CS_PIDR_PART(pidr)
Definition: arm_coresight.h:32
#define ARM_CS_CIDR0
Definition: arm_coresight.h:41
#define ARM_CS_C9_DEVTYPE_SUB_MASK
Definition: arm_coresight.h:84
#define ARM_CS_C9_DEVID_FORMAT_64BIT
Definition: arm_coresight.h:75
#define ARM_CS_CIDR2
Definition: arm_coresight.h:43
#define ARM_CS_PIDR1
Definition: arm_coresight.h:20
#define ARM_CS_C9_DEVARCH_PRESENT
Definition: arm_coresight.h:63
#define ARM_CS_PIDR_DESIGNER(pidr)
Definition: arm_coresight.h:33
enum arm_mode mode
Definition: armv4_5.c:277
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:473
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:140
#define CALL_COMMAND_HANDLER(name, extra ...)
Use this to macro to call a command helper (or a nested handler).
Definition: command.h:117
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:155
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:385
#define CMD_DATA
Use this macro to access the invoked command handler's data pointer, rather than accessing the variab...
Definition: command.h:170
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:150
#define COMMAND_PARSE_NUMBER(type, in, out)
parses the string in into out as a type, or prints a command error and passes the error code to the c...
Definition: command.h:425
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:247
#define ERROR_COMMAND_ARGUMENT_INVALID
Definition: command.h:387
@ COMMAND_CONFIG
Definition: command.h:41
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
unsigned short width
Definition: embeddedice.c:47
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
static const char * jep106_manufacturer(unsigned int manufacturer)
Definition: jep106.h:21
int jim_getopt_wide(struct jim_getopt_info *goi, jim_wide *puthere)
Remove argv[0] as wide.
Definition: jim-nvp.c:221
int jim_nvp_name2value_obj(Jim_Interp *interp, const struct jim_nvp *p, Jim_Obj *o, struct jim_nvp **result)
Definition: jim-nvp.c:65
int jim_getopt_obj(struct jim_getopt_info *goi, Jim_Obj **puthere)
Remove argv[0] from the list.
Definition: jim-nvp.c:168
#define LOG_WARNING(expr ...)
Definition: log.h:120
#define ERROR_FAIL
Definition: log.h:161
#define LOG_ERROR(expr ...)
Definition: log.h:123
#define LOG_DEBUG(expr ...)
Definition: log.h:109
#define ERROR_OK
Definition: log.h:155
uint32_t addr
Definition: nuttx.c:65
size_t size
Size of the control block search area.
Definition: rtt/rtt.c:30
This represents an ARM Debug Interface (v5) Access Port (AP).
Definition: arm_adi_v5.h:243
bool unaligned_access_bad
Definition: arm_adi_v5.h:288
bool config_ap_never_release
Definition: arm_adi_v5.h:300
bool tar_valid
Definition: arm_adi_v5.h:291
bool packed_transfers
Definition: arm_adi_v5.h:285
uint32_t tar_autoincr_block
Definition: arm_adi_v5.h:282
unsigned int refcount
Definition: arm_adi_v5.h:297
uint64_t ap_num
ADIv5: Number of this AP (0~255) ADIv6: Base address of this AP (4k aligned) TODO: to be more coheren...
Definition: arm_adi_v5.h:254
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:247
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:279
uint32_t cfg_reg
Definition: arm_adi_v5.h:294
uint32_t csw_default
Default value for (MEM-AP) AP_REG_CSW register.
Definition: arm_adi_v5.h:259
target_addr_t tar_value
Cache for (MEM-AP) AP_REG_TAR register value This is written to configure the address being read or w...
Definition: arm_adi_v5.h:273
uint32_t csw_value
Cache for (MEM-AP) AP_REG_CSW register value.
Definition: arm_adi_v5.h:266
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:320
bool ti_be_32_quirks
Definition: arm_adi_v5.h:360
struct adiv5_ap ap[DP_APSEL_MAX+1]
Definition: arm_adi_v5.h:336
uint32_t dp_ctrl_stat
Definition: arm_adi_v5.h:334
bool do_reconnect
Signals that an attempt to reestablish communication afresh should be performed before the next acces...
Definition: arm_adi_v5.h:376
const struct dap_ops * ops
Definition: arm_adi_v5.h:321
uint32_t * last_read
Holds the pointer to the destination word for the last queued read, for use with posted AP read seque...
Definition: arm_adi_v5.h:354
uint64_t apsel
Definition: arm_adi_v5.h:339
struct jtag_tap * tap
Definition: arm_adi_v5.h:332
uint64_t select
Cache for DP_SELECT register.
Definition: arm_adi_v5.h:345
unsigned int asize
Definition: arm_adi_v5.h:398
bool ignore_syspwrupack
Flag saying whether to ignore the syspwrupack flag in DAP.
Definition: arm_adi_v5.h:380
bool nu_npcx_quirks
Definition: arm_adi_v5.h:364
struct adiv5_dap * dap
Definition: arm_adi_v5.h:750
struct adiv5_dap * dap
Definition: arm_adi_v5.h:743
When run_command is called, a new instance will be created on the stack, filled with the proper value...
Definition: command.h:76
const char * name
Definition: command.h:229
Holds registers and coordinates of a CoreSight component.
Definition: arm_adi_v5.c:1206
struct adiv5_ap * ap
Definition: arm_adi_v5.c:1207
enum coresight_access_mode mode
Definition: arm_adi_v5.c:1214
target_addr_t component_base
Definition: arm_adi_v5.c:1208
uint32_t devtype_memtype
Definition: arm_adi_v5.c:1213
unsigned int type
Definition: arm_adi_v5.c:2142
uint64_t component_base
Definition: arm_adi_v5.c:2144
uint64_t ap_num
Definition: arm_adi_v5.c:2145
unsigned int idx
Definition: arm_adi_v5.c:2141
int(* connect)(struct adiv5_dap *dap)
connect operation for SWD
Definition: arm_adi_v5.h:410
uint16_t part_num
Definition: arm_adi_v5.c:1330
const char * type
Definition: arm_adi_v5.c:1331
uint16_t designer_id
Definition: arm_adi_v5.c:1329
const char * full
Definition: arm_adi_v5.c:1332
A TCL -ish GetOpt like code.
Definition: jim-nvp.h:135
Jim_Interp * interp
Definition: jim-nvp.h:136
Jim_Obj *const * argv
Definition: jim-nvp.h:138
Name Value Pairs, aka: NVP.
Definition: jim-nvp.h:59
const char * name
Definition: jim-nvp.h:60
int value
Definition: jim-nvp.h:61
Definition: register.h:111
Actions/operations to be executed while parsing ROM tables.
Definition: arm_adi_v5.c:1621
void * priv
Private data.
Definition: arm_adi_v5.c:1667
int(* mem_ap_header)(int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid, int depth, void *priv)
Executed at the start of a new MEM-AP, typically to print the MEM-AP header.
Definition: arm_adi_v5.c:1640
int(* rom_table_entry)(int retval, int depth, unsigned int offset, uint64_t romentry, void *priv)
Executed for each entry of a ROM table, typically to print the entry and information about validity o...
Definition: arm_adi_v5.c:1662
int(* cs_component)(int retval, struct cs_component_vals *v, int depth, void *priv)
Executed when a CoreSight component is parsed, typically to print information on the component.
Definition: arm_adi_v5.c:1651
int(* ap_header)(struct adiv5_ap *ap, int depth, void *priv)
Executed at the start of a new AP, typically to print the AP header.
Definition: arm_adi_v5.c:1629
Definition: target.h:120
struct jtag_tap * tap
Definition: target.h:124
void * private_config
Definition: target.h:170
bool dap_configured
Definition: target.h:184
bool has_dap
Definition: target.h:183
bool tap_configured
Definition: target.h:185
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:794
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:796
#define TARGET_ADDR_FMT
Definition: types.h:342
#define ARRAY_SIZE(x)
Compute the number of elements of a variable length array.
Definition: types.h:57
uint64_t target_addr_t
Definition: types.h:335
#define NULL
Definition: usb.h:16
uint8_t cmd
Definition: vdebug.c:1
uint8_t offset[4]
Definition: vdebug.c:9
uint8_t count[4]
Definition: vdebug.c:22