OpenOCD
cortex_a.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2005 by Dominic Rath *
5  * Dominic.Rath@gmx.de *
6  * *
7  * Copyright (C) 2006 by Magnus Lundin *
8  * lundin@mlu.mine.nu *
9  * *
10  * Copyright (C) 2008 by Spencer Oliver *
11  * spen@spen-soft.co.uk *
12  * *
13  * Copyright (C) 2009 by Dirk Behme *
14  * dirk.behme@gmail.com - copy from cortex_m3 *
15  * *
16  * Copyright (C) 2010 Øyvind Harboe *
17  * oyvind.harboe@zylin.com *
18  * *
19  * Copyright (C) ST-Ericsson SA 2011 *
20  * michel.jaouen@stericsson.com : smp minimum support *
21  * *
22  * Copyright (C) Broadcom 2012 *
23  * ehunter@broadcom.com : Cortex-R4 support *
24  * *
25  * Copyright (C) 2013 Kamal Dasu *
26  * kdasu.kdev@gmail.com *
27  * *
28  * Copyright (C) 2016 Chengyu Zheng *
29  * chengyu.zheng@polimi.it : watchpoint support *
30  * *
31  * Cortex-A8(tm) TRM, ARM DDI 0344H *
32  * Cortex-A9(tm) TRM, ARM DDI 0407F *
33  * Cortex-A4(tm) TRM, ARM DDI 0363E *
34  * Cortex-A15(tm)TRM, ARM DDI 0438C *
35  * *
36  ***************************************************************************/
37 
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41 
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/nvp.h>
56 #include <helper/time_support.h>
57 
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62  struct breakpoint *breakpoint, uint8_t matchmode);
64  struct breakpoint *breakpoint, uint8_t matchmode);
66  struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68  struct breakpoint *breakpoint);
69 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
70  uint32_t value, uint32_t *dscr);
71 static int cortex_a_mmu(struct target *target, int *enabled);
72 static int cortex_a_mmu_modify(struct target *target, int enable);
73 static int cortex_a_virt2phys(struct target *target,
74  target_addr_t virt, target_addr_t *phys);
75 static int cortex_a_read_cpu_memory(struct target *target,
76  uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
77 
78 static unsigned int ilog2(unsigned int x)
79 {
80  unsigned int y = 0;
81  x /= 2;
82  while (x) {
83  ++y;
84  x /= 2;
85  }
86  return y;
87 }
88 
89 /* restore cp15_control_reg at resume */
91 {
92  int retval = ERROR_OK;
93  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
94  struct armv7a_common *armv7a = target_to_armv7a(target);
95 
96  if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
97  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
98  /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
99  retval = armv7a->arm.mcr(target, 15,
100  0, 0, /* op1, op2 */
101  1, 0, /* CRn, CRm */
102  cortex_a->cp15_control_reg);
103  }
104  return retval;
105 }
106 
107 /*
108  * Set up ARM core for memory access.
109  * If !phys_access, switch to SVC mode and make sure MMU is on
110  * If phys_access, switch off mmu
111  */
112 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
113 {
114  struct armv7a_common *armv7a = target_to_armv7a(target);
115  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
116  int mmu_enabled = 0;
117 
118  if (phys_access == 0) {
120  cortex_a_mmu(target, &mmu_enabled);
121  if (mmu_enabled)
123  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
124  /* overwrite DACR to all-manager */
125  armv7a->arm.mcr(target, 15,
126  0, 0, 3, 0,
127  0xFFFFFFFF);
128  }
129  } else {
130  cortex_a_mmu(target, &mmu_enabled);
131  if (mmu_enabled)
133  }
134  return ERROR_OK;
135 }
136 
137 /*
138  * Restore ARM core after memory access.
139  * If !phys_access, switch to previous mode
140  * If phys_access, restore MMU setting
141  */
142 static int cortex_a_post_memaccess(struct target *target, int phys_access)
143 {
144  struct armv7a_common *armv7a = target_to_armv7a(target);
145  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
146 
147  if (phys_access == 0) {
148  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
149  /* restore */
150  armv7a->arm.mcr(target, 15,
151  0, 0, 3, 0,
152  cortex_a->cp15_dacr_reg);
153  }
155  } else {
156  int mmu_enabled = 0;
157  cortex_a_mmu(target, &mmu_enabled);
158  if (mmu_enabled)
160  }
161  return ERROR_OK;
162 }
163 
164 
165 /* modify cp15_control_reg in order to enable or disable mmu for :
166  * - virt2phys address conversion
167  * - read or write memory in phys or virt address */
168 static int cortex_a_mmu_modify(struct target *target, int enable)
169 {
170  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
171  struct armv7a_common *armv7a = target_to_armv7a(target);
172  int retval = ERROR_OK;
173  int need_write = 0;
174 
175  if (enable) {
176  /* if mmu enabled at target stop and mmu not enable */
177  if (!(cortex_a->cp15_control_reg & 0x1U)) {
178  LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
179  return ERROR_FAIL;
180  }
181  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
182  cortex_a->cp15_control_reg_curr |= 0x1U;
183  need_write = 1;
184  }
185  } else {
186  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
187  cortex_a->cp15_control_reg_curr &= ~0x1U;
188  need_write = 1;
189  }
190  }
191 
192  if (need_write) {
193  LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
194  enable ? "enable mmu" : "disable mmu",
195  cortex_a->cp15_control_reg_curr);
196 
197  retval = armv7a->arm.mcr(target, 15,
198  0, 0, /* op1, op2 */
199  1, 0, /* CRn, CRm */
200  cortex_a->cp15_control_reg_curr);
201  }
202  return retval;
203 }
204 
205 /*
206  * Cortex-A Basic debug access, very low level assumes state is saved
207  */
209 {
210  struct armv7a_common *armv7a = target_to_armv7a(target);
211  uint32_t dscr;
212  int retval;
213 
214  /* lock memory-mapped access to debug registers to prevent
215  * software interference */
216  retval = mem_ap_write_u32(armv7a->debug_ap,
217  armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
218  if (retval != ERROR_OK)
219  return retval;
220 
221  /* Disable cacheline fills and force cache write-through in debug state */
222  retval = mem_ap_write_u32(armv7a->debug_ap,
223  armv7a->debug_base + CPUDBG_DSCCR, 0);
224  if (retval != ERROR_OK)
225  return retval;
226 
227  /* Disable TLB lookup and refill/eviction in debug state */
228  retval = mem_ap_write_u32(armv7a->debug_ap,
229  armv7a->debug_base + CPUDBG_DSMCR, 0);
230  if (retval != ERROR_OK)
231  return retval;
232 
233  retval = dap_run(armv7a->debug_ap->dap);
234  if (retval != ERROR_OK)
235  return retval;
236 
237  /* Enabling of instruction execution in debug mode is done in debug_entry code */
238 
239  /* Resync breakpoint registers */
240 
241  /* Enable halt for breakpoint, watchpoint and vector catch */
242  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243  armv7a->debug_base + CPUDBG_DSCR, &dscr);
244  if (retval != ERROR_OK)
245  return retval;
246  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
247  armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
248  if (retval != ERROR_OK)
249  return retval;
250 
251  /* Since this is likely called from init or reset, update target state information*/
252  return cortex_a_poll(target);
253 }
254 
255 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
256 {
257  /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
258  * Writes final value of DSCR into *dscr. Pass force to force always
259  * reading DSCR at least once. */
260  struct armv7a_common *armv7a = target_to_armv7a(target);
261  int retval;
262 
263  if (force) {
264  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
265  armv7a->debug_base + CPUDBG_DSCR, dscr);
266  if (retval != ERROR_OK) {
267  LOG_ERROR("Could not read DSCR register");
268  return retval;
269  }
270  }
271 
273  if (retval != ERROR_OK)
274  LOG_ERROR("Error waiting for InstrCompl=1");
275  return retval;
276 }
277 
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value. Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284  uint32_t opcode, uint32_t *dscr_p)
285 {
286  uint32_t dscr;
287  int retval;
288  struct armv7a_common *armv7a = target_to_armv7a(target);
289 
290  dscr = dscr_p ? *dscr_p : 0;
291 
292  LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
293 
294  /* Wait for InstrCompl bit to be set */
295  retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
296  if (retval != ERROR_OK)
297  return retval;
298 
299  retval = mem_ap_write_u32(armv7a->debug_ap,
300  armv7a->debug_base + CPUDBG_ITR, opcode);
301  if (retval != ERROR_OK)
302  return retval;
303 
304  /* Wait for InstrCompl bit to be set */
305  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
306  if (retval != ERROR_OK) {
307  LOG_ERROR("Error waiting for cortex_a_exec_opcode");
308  return retval;
309  }
310 
311  if (dscr_p)
312  *dscr_p = dscr;
313 
314  return retval;
315 }
316 
317 /*
318  * Cortex-A implementation of Debug Programmer's Model
319  *
320  * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
321  * so there's no need to poll for it before executing an instruction.
322  *
323  * NOTE that in several of these cases the "stall" mode might be useful.
324  * It'd let us queue a few operations together... prepare/finish might
325  * be the places to enable/disable that mode.
326  */
327 
328 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
329 {
330  return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
331 }
332 
333 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
334 {
335  LOG_DEBUG("write DCC 0x%08" PRIx32, data);
338 }
339 
340 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
341  uint32_t *dscr_p)
342 {
343  uint32_t dscr = DSCR_INSTR_COMP;
344  int retval;
345 
346  if (dscr_p)
347  dscr = *dscr_p;
348 
349  /* Wait for DTRRXfull */
352  if (retval != ERROR_OK) {
353  LOG_ERROR("Error waiting for read dcc");
354  return retval;
355  }
356 
359  if (retval != ERROR_OK)
360  return retval;
361  /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
362 
363  if (dscr_p)
364  *dscr_p = dscr;
365 
366  return retval;
367 }
368 
369 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
370 {
371  struct cortex_a_common *a = dpm_to_a(dpm);
372  uint32_t dscr;
373  int retval;
374 
375  /* set up invariant: INSTR_COMP is set after ever DPM operation */
376  retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
377  if (retval != ERROR_OK) {
378  LOG_ERROR("Error waiting for dpm prepare");
379  return retval;
380  }
381 
382  /* this "should never happen" ... */
383  if (dscr & DSCR_DTR_RX_FULL) {
384  LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
385  /* Clear DCCRX */
386  retval = cortex_a_exec_opcode(
388  ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
389  &dscr);
390  if (retval != ERROR_OK)
391  return retval;
392  }
393 
394  return retval;
395 }
396 
397 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
398 {
399  /* REVISIT what could be done here? */
400  return ERROR_OK;
401 }
402 
403 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
404  uint32_t opcode, uint32_t data)
405 {
406  struct cortex_a_common *a = dpm_to_a(dpm);
407  int retval;
408  uint32_t dscr = DSCR_INSTR_COMP;
409 
410  retval = cortex_a_write_dcc(a, data);
411  if (retval != ERROR_OK)
412  return retval;
413 
414  return cortex_a_exec_opcode(
416  opcode,
417  &dscr);
418 }
419 
421  uint8_t rt, uint32_t data)
422 {
423  struct cortex_a_common *a = dpm_to_a(dpm);
424  uint32_t dscr = DSCR_INSTR_COMP;
425  int retval;
426 
427  if (rt > 15)
428  return ERROR_TARGET_INVALID;
429 
430  retval = cortex_a_write_dcc(a, data);
431  if (retval != ERROR_OK)
432  return retval;
433 
434  /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
435  return cortex_a_exec_opcode(
437  ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
438  &dscr);
439 }
440 
441 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
442  uint32_t opcode, uint32_t data)
443 {
444  struct cortex_a_common *a = dpm_to_a(dpm);
445  uint32_t dscr = DSCR_INSTR_COMP;
446  int retval;
447 
448  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
449  if (retval != ERROR_OK)
450  return retval;
451 
452  /* then the opcode, taking data from R0 */
453  retval = cortex_a_exec_opcode(
455  opcode,
456  &dscr);
457 
458  return retval;
459 }
460 
462  uint32_t opcode, uint64_t data)
463 {
464  struct cortex_a_common *a = dpm_to_a(dpm);
465  uint32_t dscr = DSCR_INSTR_COMP;
466  int retval;
467 
468  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data & 0xffffffffULL);
469  if (retval != ERROR_OK)
470  return retval;
471 
472  retval = cortex_a_instr_write_data_rt_dcc(dpm, 1, data >> 32);
473  if (retval != ERROR_OK)
474  return retval;
475 
476  /* then the opcode, taking data from R0, R1 */
478  opcode,
479  &dscr);
480  return retval;
481 }
482 
483 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
484 {
485  struct target *target = dpm->arm->target;
486  uint32_t dscr = DSCR_INSTR_COMP;
487 
488  /* "Prefetch flush" after modifying execution status in CPSR */
490  ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
491  &dscr);
492 }
493 
494 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
495  uint32_t opcode, uint32_t *data)
496 {
497  struct cortex_a_common *a = dpm_to_a(dpm);
498  int retval;
499  uint32_t dscr = DSCR_INSTR_COMP;
500 
501  /* the opcode, writing data to DCC */
502  retval = cortex_a_exec_opcode(
504  opcode,
505  &dscr);
506  if (retval != ERROR_OK)
507  return retval;
508 
509  return cortex_a_read_dcc(a, data, &dscr);
510 }
511 
513  uint8_t rt, uint32_t *data)
514 {
515  struct cortex_a_common *a = dpm_to_a(dpm);
516  uint32_t dscr = DSCR_INSTR_COMP;
517  int retval;
518 
519  if (rt > 15)
520  return ERROR_TARGET_INVALID;
521 
522  retval = cortex_a_exec_opcode(
524  ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
525  &dscr);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  return cortex_a_read_dcc(a, data, &dscr);
530 }
531 
532 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
533  uint32_t opcode, uint32_t *data)
534 {
535  struct cortex_a_common *a = dpm_to_a(dpm);
536  uint32_t dscr = DSCR_INSTR_COMP;
537  int retval;
538 
539  /* the opcode, writing data to R0 */
540  retval = cortex_a_exec_opcode(
542  opcode,
543  &dscr);
544  if (retval != ERROR_OK)
545  return retval;
546 
547  /* write R0 to DCC */
548  return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
549 }
550 
552  uint32_t opcode, uint64_t *data)
553 {
554  uint32_t lo, hi;
555  int retval;
556 
557  /* the opcode, writing data to RO, R1 */
558  retval = cortex_a_instr_read_data_r0(dpm, opcode, &lo);
559  if (retval != ERROR_OK)
560  return retval;
561 
562  *data = lo;
563 
564  /* write R1 to DCC */
565  retval = cortex_a_instr_read_data_rt_dcc(dpm, 1, &hi);
566  if (retval != ERROR_OK)
567  return retval;
568 
569  *data |= (uint64_t)hi << 32;
570 
571  return retval;
572 }
573 
574 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t,
575  uint32_t addr, uint32_t control)
576 {
577  struct cortex_a_common *a = dpm_to_a(dpm);
578  uint32_t vr = a->armv7a_common.debug_base;
579  uint32_t cr = a->armv7a_common.debug_base;
580  int retval;
581 
582  switch (index_t) {
583  case 0 ... 15: /* breakpoints */
584  vr += CPUDBG_BVR_BASE;
585  cr += CPUDBG_BCR_BASE;
586  break;
587  case 16 ... 31: /* watchpoints */
588  vr += CPUDBG_WVR_BASE;
589  cr += CPUDBG_WCR_BASE;
590  index_t -= 16;
591  break;
592  default:
593  return ERROR_FAIL;
594  }
595  vr += 4 * index_t;
596  cr += 4 * index_t;
597 
598  LOG_DEBUG("A: bpwp enable, vr %08" PRIx32 " cr %08" PRIx32, vr, cr);
599 
601  vr, addr);
602  if (retval != ERROR_OK)
603  return retval;
605  cr, control);
606  return retval;
607 }
608 
609 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
610 {
611  struct cortex_a_common *a = dpm_to_a(dpm);
612  uint32_t cr;
613 
614  switch (index_t) {
615  case 0 ... 15:
617  break;
618  case 16 ... 31:
620  index_t -= 16;
621  break;
622  default:
623  return ERROR_FAIL;
624  }
625  cr += 4 * index_t;
626 
627  LOG_DEBUG("A: bpwp disable, cr %08" PRIx32, cr);
628 
629  /* clear control register */
631 }
632 
633 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
634 {
635  struct arm_dpm *dpm = &a->armv7a_common.dpm;
636  int retval;
637 
638  dpm->arm = &a->armv7a_common.arm;
639  dpm->didr = didr;
640 
643 
648 
652 
655 
656  retval = arm_dpm_setup(dpm);
657  if (retval == ERROR_OK)
658  retval = arm_dpm_initialize(dpm);
659 
660  return retval;
661 }
662 static struct target *get_cortex_a(struct target *target, int32_t coreid)
663 {
664  struct target_list *head;
665 
667  struct target *curr = head->target;
668  if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
669  return curr;
670  }
671  return target;
672 }
673 static int cortex_a_halt(struct target *target);
674 
675 static int cortex_a_halt_smp(struct target *target)
676 {
677  int retval = 0;
678  struct target_list *head;
679 
681  struct target *curr = head->target;
682  if ((curr != target) && (curr->state != TARGET_HALTED)
683  && target_was_examined(curr))
684  retval += cortex_a_halt(curr);
685  }
686  return retval;
687 }
688 
689 static int update_halt_gdb(struct target *target)
690 {
691  struct target *gdb_target = NULL;
692  struct target_list *head;
693  struct target *curr;
694  int retval = 0;
695 
696  if (target->gdb_service && target->gdb_service->core[0] == -1) {
699  retval += cortex_a_halt_smp(target);
700  }
701 
702  if (target->gdb_service)
703  gdb_target = target->gdb_service->target;
704 
706  curr = head->target;
707  /* skip calling context */
708  if (curr == target)
709  continue;
710  if (!target_was_examined(curr))
711  continue;
712  /* skip targets that were already halted */
713  if (curr->state == TARGET_HALTED)
714  continue;
715  /* Skip gdb_target; it alerts GDB so has to be polled as last one */
716  if (curr == gdb_target)
717  continue;
718 
719  /* avoid recursion in cortex_a_poll() */
720  curr->smp = 0;
721  cortex_a_poll(curr);
722  curr->smp = 1;
723  }
724 
725  /* after all targets were updated, poll the gdb serving target */
726  if (gdb_target && gdb_target != target)
727  cortex_a_poll(gdb_target);
728  return retval;
729 }
730 
731 /*
732  * Cortex-A Run control
733  */
734 
735 static int cortex_a_poll(struct target *target)
736 {
737  int retval = ERROR_OK;
738  uint32_t dscr;
739  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
740  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
741  enum target_state prev_target_state = target->state;
742  /* toggle to another core is done by gdb as follow */
743  /* maint packet J core_id */
744  /* continue */
745  /* the next polling trigger an halt event sent to gdb */
746  if ((target->state == TARGET_HALTED) && (target->smp) &&
747  (target->gdb_service) &&
748  (!target->gdb_service->target)) {
752  return retval;
753  }
754  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
755  armv7a->debug_base + CPUDBG_DSCR, &dscr);
756  if (retval != ERROR_OK)
757  return retval;
758  cortex_a->cpudbg_dscr = dscr;
759 
761  if (prev_target_state != TARGET_HALTED) {
762  /* We have a halting debug event */
763  LOG_DEBUG("Target halted");
765 
766  retval = cortex_a_debug_entry(target);
767  if (retval != ERROR_OK)
768  return retval;
769 
770  if (target->smp) {
771  retval = update_halt_gdb(target);
772  if (retval != ERROR_OK)
773  return retval;
774  }
775 
776  if (prev_target_state == TARGET_DEBUG_RUNNING) {
778  } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
779  if (arm_semihosting(target, &retval) != 0)
780  return retval;
781 
784  }
785  }
786  } else
788 
789  return retval;
790 }
791 
792 static int cortex_a_halt(struct target *target)
793 {
794  int retval;
795  uint32_t dscr;
796  struct armv7a_common *armv7a = target_to_armv7a(target);
797 
798  /*
799  * Tell the core to be halted by writing DRCR with 0x1
800  * and then wait for the core to be halted.
801  */
802  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
803  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
804  if (retval != ERROR_OK)
805  return retval;
806 
807  dscr = 0; /* force read of dscr */
809  DSCR_CORE_HALTED, &dscr);
810  if (retval != ERROR_OK) {
811  LOG_ERROR("Error waiting for halt");
812  return retval;
813  }
814 
816 
817  return ERROR_OK;
818 }
819 
820 static int cortex_a_internal_restore(struct target *target, bool current,
821  target_addr_t *address, bool handle_breakpoints, bool debug_execution)
822 {
823  struct armv7a_common *armv7a = target_to_armv7a(target);
824  struct arm *arm = &armv7a->arm;
825  int retval;
826  uint32_t resume_pc;
827 
828  if (!debug_execution)
830 
831 #if 0
832  if (debug_execution) {
833  /* Disable interrupts */
834  /* We disable interrupts in the PRIMASK register instead of
835  * masking with C_MASKINTS,
836  * This is probably the same issue as Cortex-M3 Errata 377493:
837  * C_MASKINTS in parallel with disabled interrupts can cause
838  * local faults to not be taken. */
839  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
840  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
841  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
842 
843  /* Make sure we are in Thumb mode */
844  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
845  buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
846  32) | (1 << 24));
847  armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
848  armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
849  }
850 #endif
851 
852  /* current = true: continue on current pc, otherwise continue at <address> */
853  resume_pc = buf_get_u32(arm->pc->value, 0, 32);
854  if (!current)
855  resume_pc = *address;
856  else
857  *address = resume_pc;
858 
859  /* Make sure that the Armv7 gdb thumb fixups does not
860  * kill the return address
861  */
862  switch (arm->core_state) {
863  case ARM_STATE_ARM:
864  resume_pc &= 0xFFFFFFFC;
865  break;
866  case ARM_STATE_THUMB:
867  case ARM_STATE_THUMB_EE:
868  /* When the return address is loaded into PC
869  * bit 0 must be 1 to stay in Thumb state
870  */
871  resume_pc |= 0x1;
872  break;
873  case ARM_STATE_JAZELLE:
874  LOG_ERROR("How do I resume into Jazelle state??");
875  return ERROR_FAIL;
876  case ARM_STATE_AARCH64:
877  LOG_ERROR("Shouldn't be in AARCH64 state");
878  return ERROR_FAIL;
879  }
880  LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
881  buf_set_u32(arm->pc->value, 0, 32, resume_pc);
882  arm->pc->dirty = true;
883  arm->pc->valid = true;
884 
885  /* restore dpm_mode at system halt */
887  /* called it now before restoring context because it uses cpu
888  * register r0 for restoring cp15 control register */
890  if (retval != ERROR_OK)
891  return retval;
892  retval = cortex_a_restore_context(target, handle_breakpoints);
893  if (retval != ERROR_OK)
894  return retval;
897 
898  /* registers are now invalid */
900 
901 #if 0
902  /* the front-end may request us not to handle breakpoints */
903  if (handle_breakpoints) {
904  /* Single step past breakpoint at current address */
905  breakpoint = breakpoint_find(target, resume_pc);
906  if (breakpoint) {
907  LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
908  cortex_m3_unset_breakpoint(target, breakpoint);
909  cortex_m3_single_step_core(target);
910  cortex_m3_set_breakpoint(target, breakpoint);
911  }
912  }
913 
914 #endif
915  return retval;
916 }
917 
919 {
920  struct armv7a_common *armv7a = target_to_armv7a(target);
921  struct arm *arm = &armv7a->arm;
922  int retval;
923  uint32_t dscr;
924  /*
925  * * Restart core and wait for it to be started. Clear ITRen and sticky
926  * * exception flags: see ARMv7 ARM, C5.9.
927  *
928  * REVISIT: for single stepping, we probably want to
929  * disable IRQs by default, with optional override...
930  */
931 
932  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
933  armv7a->debug_base + CPUDBG_DSCR, &dscr);
934  if (retval != ERROR_OK)
935  return retval;
936 
937  if ((dscr & DSCR_INSTR_COMP) == 0)
938  LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
939 
940  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
941  armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
942  if (retval != ERROR_OK)
943  return retval;
944 
945  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
946  armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
948  if (retval != ERROR_OK)
949  return retval;
950 
951  dscr = 0; /* force read of dscr */
953  DSCR_CORE_RESTARTED, &dscr);
954  if (retval != ERROR_OK) {
955  LOG_ERROR("Error waiting for resume");
956  return retval;
957  }
958 
961 
962  /* registers are now invalid */
964 
965  return ERROR_OK;
966 }
967 
968 static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
969 {
970  int retval = 0;
971  struct target_list *head;
973 
975  struct target *curr = head->target;
976  if ((curr != target) && (curr->state != TARGET_RUNNING)
977  && target_was_examined(curr)) {
978  /* resume current address , not in step mode */
979  retval += cortex_a_internal_restore(curr, true, &address,
980  handle_breakpoints, false);
981  retval += cortex_a_internal_restart(curr);
982  }
983  }
984  return retval;
985 }
986 
987 static int cortex_a_resume(struct target *target, bool current,
988  target_addr_t address, bool handle_breakpoints, bool debug_execution)
989 {
990  int retval = 0;
991  /* dummy resume for smp toggle in order to reduce gdb impact */
992  if ((target->smp) && (target->gdb_service->core[1] != -1)) {
993  /* simulate a start and halt of target */
996  /* fake resume at next poll we play the target core[1], see poll*/
998  return 0;
999  }
1000  cortex_a_internal_restore(target, current, &address, handle_breakpoints,
1001  debug_execution);
1002  if (target->smp) {
1003  target->gdb_service->core[0] = -1;
1004  retval = cortex_a_restore_smp(target, handle_breakpoints);
1005  if (retval != ERROR_OK)
1006  return retval;
1007  }
1009 
1010  if (!debug_execution) {
1013  LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1014  } else {
1017  LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1018  }
1019 
1020  return ERROR_OK;
1021 }
1022 
1024 {
1025  uint32_t dscr;
1026  int retval = ERROR_OK;
1027  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1028  struct armv7a_common *armv7a = target_to_armv7a(target);
1029  struct arm *arm = &armv7a->arm;
1030 
1031  LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1032 
1033  /* REVISIT surely we should not re-read DSCR !! */
1034  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1035  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1036  if (retval != ERROR_OK)
1037  return retval;
1038 
1039  /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1040  * imprecise data aborts get discarded by issuing a Data
1041  * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1042  */
1043 
1044  /* Enable the ITR execution once we are in debug mode */
1045  dscr |= DSCR_ITR_EN;
1046  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1047  armv7a->debug_base + CPUDBG_DSCR, dscr);
1048  if (retval != ERROR_OK)
1049  return retval;
1050 
1051  /* Examine debug reason */
1052  arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1053 
1054  /* save address of instruction that triggered the watchpoint? */
1056  uint32_t wfar;
1057 
1058  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1059  armv7a->debug_base + CPUDBG_WFAR,
1060  &wfar);
1061  if (retval != ERROR_OK)
1062  return retval;
1063  arm_dpm_report_wfar(&armv7a->dpm, wfar);
1064  }
1065 
1066  /* First load register accessible through core debug port */
1067  retval = arm_dpm_read_current_registers(&armv7a->dpm);
1068  if (retval != ERROR_OK)
1069  return retval;
1070 
1071  if (arm->spsr) {
1072  /* read SPSR */
1073  retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1074  if (retval != ERROR_OK)
1075  return retval;
1076  }
1077 
1078 #if 0
1079 /* TODO, Move this */
1080  uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1081  cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1082  LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1083 
1084  cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1085  LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1086 
1087  cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1088  LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1089 #endif
1090 
1091  /* Are we in an exception handler */
1092 /* armv4_5->exception_number = 0; */
1093  if (armv7a->post_debug_entry) {
1094  retval = armv7a->post_debug_entry(target);
1095  if (retval != ERROR_OK)
1096  return retval;
1097  }
1098 
1099  return retval;
1100 }
1101 
1103 {
1104  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1105  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1106  int retval;
1107 
1108  /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1109  retval = armv7a->arm.mrc(target, 15,
1110  0, 0, /* op1, op2 */
1111  1, 0, /* CRn, CRm */
1112  &cortex_a->cp15_control_reg);
1113  if (retval != ERROR_OK)
1114  return retval;
1115  LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1116  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1117 
1118  if (!armv7a->is_armv7r)
1120 
1121  if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1123 
1124  if (armv7a->is_armv7r) {
1125  armv7a->armv7a_mmu.mmu_enabled = 0;
1126  } else {
1127  armv7a->armv7a_mmu.mmu_enabled =
1128  (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1129  }
1131  (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1133  (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1134  cortex_a->curr_mode = armv7a->arm.core_mode;
1135 
1136  /* switch to SVC mode to read DACR */
1137  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1138  armv7a->arm.mrc(target, 15,
1139  0, 0, 3, 0,
1140  &cortex_a->cp15_dacr_reg);
1141 
1142  LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1143  cortex_a->cp15_dacr_reg);
1144 
1145  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1146  return ERROR_OK;
1147 }
1148 
1150  unsigned long bit_mask, unsigned long value)
1151 {
1152  struct armv7a_common *armv7a = target_to_armv7a(target);
1153  uint32_t dscr;
1154 
1155  /* Read DSCR */
1156  int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1157  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1158  if (retval != ERROR_OK)
1159  return retval;
1160 
1161  /* clear bitfield */
1162  dscr &= ~bit_mask;
1163  /* put new value */
1164  dscr |= value & bit_mask;
1165 
1166  /* write new DSCR */
1167  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1168  armv7a->debug_base + CPUDBG_DSCR, dscr);
1169  return retval;
1170 }
1171 
1172 /*
1173  * Single-step on ARMv7a/r is implemented through a HW breakpoint that hits
1174  * every instruction at any address except the address of the current
1175  * instruction.
1176  * Such HW breakpoint is never hit in case of a single instruction that jumps
1177  * on itself (infinite loop), or a WFI or a WFE. In this case, halt the CPU
1178  * after a timeout.
1179  * The jump on itself would be executed several times before the timeout forces
1180  * the halt, but this is not an issue. In ARMv7a/r there are few "pathological"
1181  * instructions, listed below, that jumps on itself and that can have side
1182  * effects if executed more than once; but they are not considered as real use
1183  * cases generated by a compiler.
1184  * Some example:
1185  * - 'pop {pc}' or multi register 'pop' including PC, when the new PC value is
1186  * the same value of current PC. The single step will not stop at the first
1187  * 'pop' and will continue taking values from the stack, modifying SP at each
1188  * iteration.
1189  * - 'rfeda', 'rfedb', 'rfeia', 'rfeib', when the new PC value is the same
1190  * value of current PC. The register provided to the instruction (usually SP)
1191  * will be incremented or decremented at each iteration.
1192  *
1193  * TODO: fix exit in case of error, cleaning HW breakpoints.
1194  */
1195 static int cortex_a_step(struct target *target, bool current, target_addr_t address,
1196  bool handle_breakpoints)
1197 {
1198  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1199  struct armv7a_common *armv7a = target_to_armv7a(target);
1200  struct arm *arm = &armv7a->arm;
1201  struct breakpoint *breakpoint = NULL;
1202  struct breakpoint stepbreakpoint;
1203  struct reg *r;
1204  int retval;
1205 
1206  if (target->state != TARGET_HALTED) {
1207  LOG_TARGET_ERROR(target, "not halted");
1208  return ERROR_TARGET_NOT_HALTED;
1209  }
1210 
1211  /* current = true: continue on current pc, otherwise continue at <address> */
1212  r = arm->pc;
1213  if (!current)
1214  buf_set_u32(r->value, 0, 32, address);
1215  else
1216  address = buf_get_u32(r->value, 0, 32);
1217 
1218  /* The front-end may request us not to handle breakpoints.
1219  * But since Cortex-A uses breakpoint for single step,
1220  * we MUST handle breakpoints.
1221  */
1222  handle_breakpoints = true;
1223  if (handle_breakpoints) {
1225  if (breakpoint)
1227  }
1228 
1229  /* Setup single step breakpoint */
1230  stepbreakpoint.address = address;
1231  stepbreakpoint.asid = 0;
1232  stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1233  ? 2 : 4;
1234  stepbreakpoint.type = BKPT_HARD;
1235  stepbreakpoint.is_set = false;
1236 
1237  /* Disable interrupts during single step if requested */
1238  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1240  if (retval != ERROR_OK)
1241  return retval;
1242  }
1243 
1244  /* Break on IVA mismatch */
1245  cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1246 
1248 
1249  retval = cortex_a_resume(target, true, address, false, false);
1250  if (retval != ERROR_OK)
1251  return retval;
1252 
1253  // poll at least once before starting the timeout
1254  retval = cortex_a_poll(target);
1255  if (retval != ERROR_OK)
1256  return retval;
1257 
1258  int64_t then = timeval_ms() + 100;
1259  while (target->state != TARGET_HALTED) {
1260  if (timeval_ms() > then)
1261  break;
1262 
1263  retval = cortex_a_poll(target);
1264  if (retval != ERROR_OK)
1265  return retval;
1266  }
1267 
1268  if (target->state != TARGET_HALTED) {
1269  LOG_TARGET_DEBUG(target, "timeout waiting for target halt, try halt");
1270 
1271  retval = cortex_a_halt(target);
1272  if (retval != ERROR_OK)
1273  return retval;
1274 
1275  retval = cortex_a_poll(target);
1276  if (retval != ERROR_OK)
1277  return retval;
1278 
1279  if (target->state != TARGET_HALTED) {
1280  LOG_TARGET_ERROR(target, "timeout waiting for target halt");
1281  return ERROR_FAIL;
1282  }
1283  }
1284 
1285  cortex_a_unset_breakpoint(target, &stepbreakpoint);
1286 
1287  /* Re-enable interrupts if they were disabled */
1288  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1290  if (retval != ERROR_OK)
1291  return retval;
1292  }
1293 
1294 
1296 
1297  if (breakpoint)
1299 
1300  return ERROR_OK;
1301 }
1302 
1303 static int cortex_a_restore_context(struct target *target, bool bpwp)
1304 {
1305  struct armv7a_common *armv7a = target_to_armv7a(target);
1306 
1307  LOG_DEBUG(" ");
1308 
1309  if (armv7a->pre_restore_context)
1310  armv7a->pre_restore_context(target);
1311 
1312  return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1313 }
1314 
1315 /*
1316  * Cortex-A Breakpoint and watchpoint functions
1317  */
1318 
1319 /* Setup hardware Breakpoint Register Pair */
1321  struct breakpoint *breakpoint, uint8_t matchmode)
1322 {
1323  int retval;
1324  int brp_i = 0;
1325  uint32_t control;
1326  uint8_t byte_addr_select = 0x0F;
1327  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1328  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1329  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1330 
1331  if (breakpoint->is_set) {
1332  LOG_WARNING("breakpoint already set");
1333  return ERROR_OK;
1334  }
1335 
1336  if (breakpoint->type == BKPT_HARD) {
1337  while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1338  brp_i++;
1339  if (brp_i >= cortex_a->brp_num) {
1340  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1342  }
1343  breakpoint_hw_set(breakpoint, brp_i);
1344  if (breakpoint->length == 2)
1345  byte_addr_select = (3 << (breakpoint->address & 0x02));
1346  control = ((matchmode & 0x7) << 20)
1347  | (byte_addr_select << 5)
1348  | (3 << 1) | 1;
1349  brp_list[brp_i].used = true;
1350  brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1351  brp_list[brp_i].control = control;
1352  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1353  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1354  brp_list[brp_i].value);
1355  if (retval != ERROR_OK)
1356  return retval;
1357  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1358  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1359  brp_list[brp_i].control);
1360  if (retval != ERROR_OK)
1361  return retval;
1362  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1363  brp_list[brp_i].control,
1364  brp_list[brp_i].value);
1365  } else if (breakpoint->type == BKPT_SOFT) {
1366  uint8_t code[4];
1367  if (breakpoint->length == 2) {
1368  /* length == 2: Thumb breakpoint */
1369  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1370  } else if (breakpoint->length == 3) {
1371  /* length == 3: Thumb-2 breakpoint, actual encoding is
1372  * a regular Thumb BKPT instruction but we replace a
1373  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1374  * length
1375  */
1376  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1377  breakpoint->length = 4;
1378  } else {
1379  /* length == 4, normal ARM breakpoint */
1380  buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1381  }
1382 
1383  retval = target_read_memory(target,
1384  breakpoint->address & 0xFFFFFFFE,
1385  breakpoint->length, 1,
1387  if (retval != ERROR_OK)
1388  return retval;
1389 
1390  /* make sure data cache is cleaned & invalidated down to PoC */
1392 
1393  retval = target_write_memory(target,
1394  breakpoint->address & 0xFFFFFFFE,
1395  breakpoint->length, 1, code);
1396  if (retval != ERROR_OK)
1397  return retval;
1398 
1399  /* update i-cache at breakpoint location */
1402 
1403  breakpoint->is_set = true;
1404  }
1405 
1406  return ERROR_OK;
1407 }
1408 
1410  struct breakpoint *breakpoint, uint8_t matchmode)
1411 {
1412  int retval = ERROR_FAIL;
1413  int brp_i = 0;
1414  uint32_t control;
1415  uint8_t byte_addr_select = 0x0F;
1416  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1417  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1418  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1419 
1420  if (breakpoint->is_set) {
1421  LOG_WARNING("breakpoint already set");
1422  return retval;
1423  }
1424  /*check available context BRPs*/
1425  while ((brp_list[brp_i].used ||
1426  (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1427  brp_i++;
1428 
1429  if (brp_i >= cortex_a->brp_num) {
1430  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1431  return ERROR_FAIL;
1432  }
1433 
1434  breakpoint_hw_set(breakpoint, brp_i);
1435  control = ((matchmode & 0x7) << 20)
1436  | (byte_addr_select << 5)
1437  | (3 << 1) | 1;
1438  brp_list[brp_i].used = true;
1439  brp_list[brp_i].value = (breakpoint->asid);
1440  brp_list[brp_i].control = control;
1441  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1442  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1443  brp_list[brp_i].value);
1444  if (retval != ERROR_OK)
1445  return retval;
1446  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1447  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1448  brp_list[brp_i].control);
1449  if (retval != ERROR_OK)
1450  return retval;
1451  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1452  brp_list[brp_i].control,
1453  brp_list[brp_i].value);
1454  return ERROR_OK;
1455 
1456 }
1457 
1459 {
1460  int retval = ERROR_FAIL;
1461  int brp_1 = 0; /* holds the contextID pair */
1462  int brp_2 = 0; /* holds the IVA pair */
1463  uint32_t control_ctx, control_iva;
1464  uint8_t ctx_byte_addr_select = 0x0F;
1465  uint8_t iva_byte_addr_select = 0x0F;
1466  uint8_t ctx_machmode = 0x03;
1467  uint8_t iva_machmode = 0x01;
1468  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1469  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1470  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1471 
1472  if (breakpoint->is_set) {
1473  LOG_WARNING("breakpoint already set");
1474  return retval;
1475  }
1476  /*check available context BRPs*/
1477  while ((brp_list[brp_1].used ||
1478  (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1479  brp_1++;
1480 
1481  LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1482  if (brp_1 >= cortex_a->brp_num) {
1483  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1484  return ERROR_FAIL;
1485  }
1486 
1487  while ((brp_list[brp_2].used ||
1488  (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1489  brp_2++;
1490 
1491  LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1492  if (brp_2 >= cortex_a->brp_num) {
1493  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1494  return ERROR_FAIL;
1495  }
1496 
1497  breakpoint_hw_set(breakpoint, brp_1);
1498  breakpoint->linked_brp = brp_2;
1499  control_ctx = ((ctx_machmode & 0x7) << 20)
1500  | (brp_2 << 16)
1501  | (0 << 14)
1502  | (ctx_byte_addr_select << 5)
1503  | (3 << 1) | 1;
1504  brp_list[brp_1].used = true;
1505  brp_list[brp_1].value = (breakpoint->asid);
1506  brp_list[brp_1].control = control_ctx;
1507  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1508  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1509  brp_list[brp_1].value);
1510  if (retval != ERROR_OK)
1511  return retval;
1512  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1513  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1514  brp_list[brp_1].control);
1515  if (retval != ERROR_OK)
1516  return retval;
1517 
1518  control_iva = ((iva_machmode & 0x7) << 20)
1519  | (brp_1 << 16)
1520  | (iva_byte_addr_select << 5)
1521  | (3 << 1) | 1;
1522  brp_list[brp_2].used = true;
1523  brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1524  brp_list[brp_2].control = control_iva;
1525  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1526  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1527  brp_list[brp_2].value);
1528  if (retval != ERROR_OK)
1529  return retval;
1530  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1531  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1532  brp_list[brp_2].control);
1533  if (retval != ERROR_OK)
1534  return retval;
1535 
1536  return ERROR_OK;
1537 }
1538 
1540 {
1541  int retval;
1542  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1543  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1544  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1545 
1546  if (!breakpoint->is_set) {
1547  LOG_WARNING("breakpoint not set");
1548  return ERROR_OK;
1549  }
1550 
1551  if (breakpoint->type == BKPT_HARD) {
1552  if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1553  int brp_i = breakpoint->number;
1554  int brp_j = breakpoint->linked_brp;
1555  if (brp_i >= cortex_a->brp_num) {
1556  LOG_DEBUG("Invalid BRP number in breakpoint");
1557  return ERROR_OK;
1558  }
1559  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1560  brp_list[brp_i].control, brp_list[brp_i].value);
1561  brp_list[brp_i].used = false;
1562  brp_list[brp_i].value = 0;
1563  brp_list[brp_i].control = 0;
1564  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1565  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1566  brp_list[brp_i].control);
1567  if (retval != ERROR_OK)
1568  return retval;
1569  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1570  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1571  brp_list[brp_i].value);
1572  if (retval != ERROR_OK)
1573  return retval;
1574  if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1575  LOG_DEBUG("Invalid BRP number in breakpoint");
1576  return ERROR_OK;
1577  }
1578  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1579  brp_list[brp_j].control, brp_list[brp_j].value);
1580  brp_list[brp_j].used = false;
1581  brp_list[brp_j].value = 0;
1582  brp_list[brp_j].control = 0;
1583  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1584  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1585  brp_list[brp_j].control);
1586  if (retval != ERROR_OK)
1587  return retval;
1588  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1589  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1590  brp_list[brp_j].value);
1591  if (retval != ERROR_OK)
1592  return retval;
1593  breakpoint->linked_brp = 0;
1594  breakpoint->is_set = false;
1595  return ERROR_OK;
1596 
1597  } else {
1598  int brp_i = breakpoint->number;
1599  if (brp_i >= cortex_a->brp_num) {
1600  LOG_DEBUG("Invalid BRP number in breakpoint");
1601  return ERROR_OK;
1602  }
1603  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1604  brp_list[brp_i].control, brp_list[brp_i].value);
1605  brp_list[brp_i].used = false;
1606  brp_list[brp_i].value = 0;
1607  brp_list[brp_i].control = 0;
1608  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1609  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1610  brp_list[brp_i].control);
1611  if (retval != ERROR_OK)
1612  return retval;
1613  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1614  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1615  brp_list[brp_i].value);
1616  if (retval != ERROR_OK)
1617  return retval;
1618  breakpoint->is_set = false;
1619  return ERROR_OK;
1620  }
1621  } else {
1622 
1623  /* make sure data cache is cleaned & invalidated down to PoC */
1625  breakpoint->length);
1626 
1627  /* restore original instruction (kept in target endianness) */
1628  if (breakpoint->length == 4) {
1629  retval = target_write_memory(target,
1630  breakpoint->address & 0xFFFFFFFE,
1631  4, 1, breakpoint->orig_instr);
1632  if (retval != ERROR_OK)
1633  return retval;
1634  } else {
1635  retval = target_write_memory(target,
1636  breakpoint->address & 0xFFFFFFFE,
1637  2, 1, breakpoint->orig_instr);
1638  if (retval != ERROR_OK)
1639  return retval;
1640  }
1641 
1642  /* update i-cache at breakpoint location */
1644  breakpoint->length);
1646  breakpoint->length);
1647  }
1648  breakpoint->is_set = false;
1649 
1650  return ERROR_OK;
1651 }
1652 
1654  struct breakpoint *breakpoint)
1655 {
1656  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1657 
1658  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1659  LOG_INFO("no hardware breakpoint available");
1661  }
1662 
1663  if (breakpoint->type == BKPT_HARD)
1664  cortex_a->brp_num_available--;
1665 
1666  return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1667 }
1668 
1670  struct breakpoint *breakpoint)
1671 {
1672  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1673 
1674  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1675  LOG_INFO("no hardware breakpoint available");
1677  }
1678 
1679  if (breakpoint->type == BKPT_HARD)
1680  cortex_a->brp_num_available--;
1681 
1682  return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1683 }
1684 
1686  struct breakpoint *breakpoint)
1687 {
1688  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1689 
1690  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1691  LOG_INFO("no hardware breakpoint available");
1693  }
1694 
1695  if (breakpoint->type == BKPT_HARD)
1696  cortex_a->brp_num_available--;
1697 
1699 }
1700 
1701 
1703 {
1704  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1705 
1706 #if 0
1707 /* It is perfectly possible to remove breakpoints while the target is running */
1708  if (target->state != TARGET_HALTED) {
1709  LOG_WARNING("target not halted");
1710  return ERROR_TARGET_NOT_HALTED;
1711  }
1712 #endif
1713 
1714  if (breakpoint->is_set) {
1716  if (breakpoint->type == BKPT_HARD)
1717  cortex_a->brp_num_available++;
1718  }
1719 
1720 
1721  return ERROR_OK;
1722 }
1723 
1735 {
1736  int retval = ERROR_OK;
1737  int wrp_i = 0;
1738  uint32_t control;
1739  uint32_t address;
1740  uint8_t address_mask;
1741  uint8_t byte_address_select;
1742  uint8_t load_store_access_control = 0x3;
1743  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1744  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1745  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1746 
1747  if (watchpoint->is_set) {
1748  LOG_WARNING("watchpoint already set");
1749  return retval;
1750  }
1751 
1752  /* check available context WRPs */
1753  while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1754  wrp_i++;
1755 
1756  if (wrp_i >= cortex_a->wrp_num) {
1757  LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1758  return ERROR_FAIL;
1759  }
1760 
1761  if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1762  (watchpoint->length & (watchpoint->length - 1))) {
1763  LOG_WARNING("watchpoint length must be a power of 2");
1764  return ERROR_FAIL;
1765  }
1766 
1767  if (watchpoint->address & (watchpoint->length - 1)) {
1768  LOG_WARNING("watchpoint address must be aligned at length");
1769  return ERROR_FAIL;
1770  }
1771 
1772  /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1773  /* handle wp length 1 and 2 through byte select */
1774  switch (watchpoint->length) {
1775  case 1:
1776  byte_address_select = BIT(watchpoint->address & 0x3);
1777  address = watchpoint->address & ~0x3;
1778  address_mask = 0;
1779  break;
1780 
1781  case 2:
1782  byte_address_select = 0x03 << (watchpoint->address & 0x2);
1783  address = watchpoint->address & ~0x3;
1784  address_mask = 0;
1785  break;
1786 
1787  case 4:
1788  byte_address_select = 0x0f;
1790  address_mask = 0;
1791  break;
1792 
1793  default:
1794  byte_address_select = 0xff;
1796  address_mask = ilog2(watchpoint->length);
1797  break;
1798  }
1799 
1800  watchpoint_set(watchpoint, wrp_i);
1801  control = (address_mask << 24) |
1802  (byte_address_select << 5) |
1803  (load_store_access_control << 3) |
1804  (0x3 << 1) | 1;
1805  wrp_list[wrp_i].used = true;
1806  wrp_list[wrp_i].value = address;
1807  wrp_list[wrp_i].control = control;
1808 
1809  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1810  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1811  wrp_list[wrp_i].value);
1812  if (retval != ERROR_OK)
1813  return retval;
1814 
1815  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1816  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1817  wrp_list[wrp_i].control);
1818  if (retval != ERROR_OK)
1819  return retval;
1820 
1821  LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1822  wrp_list[wrp_i].control,
1823  wrp_list[wrp_i].value);
1824 
1825  return ERROR_OK;
1826 }
1827 
1837 {
1838  int retval;
1839  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1840  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1841  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1842 
1843  if (!watchpoint->is_set) {
1844  LOG_WARNING("watchpoint not set");
1845  return ERROR_OK;
1846  }
1847 
1848  int wrp_i = watchpoint->number;
1849  if (wrp_i >= cortex_a->wrp_num) {
1850  LOG_DEBUG("Invalid WRP number in watchpoint");
1851  return ERROR_OK;
1852  }
1853  LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1854  wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1855  wrp_list[wrp_i].used = false;
1856  wrp_list[wrp_i].value = 0;
1857  wrp_list[wrp_i].control = 0;
1858  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1859  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1860  wrp_list[wrp_i].control);
1861  if (retval != ERROR_OK)
1862  return retval;
1863  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1864  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1865  wrp_list[wrp_i].value);
1866  if (retval != ERROR_OK)
1867  return retval;
1868  watchpoint->is_set = false;
1869 
1870  return ERROR_OK;
1871 }
1872 
1882 {
1883  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1884 
1885  if (cortex_a->wrp_num_available < 1) {
1886  LOG_INFO("no hardware watchpoint available");
1888  }
1889 
1890  int retval = cortex_a_set_watchpoint(target, watchpoint);
1891  if (retval != ERROR_OK)
1892  return retval;
1893 
1894  cortex_a->wrp_num_available--;
1895  return ERROR_OK;
1896 }
1897 
1907 {
1908  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1909 
1910  if (watchpoint->is_set) {
1911  cortex_a->wrp_num_available++;
1913  }
1914  return ERROR_OK;
1915 }
1916 
1917 
1918 /*
1919  * Cortex-A Reset functions
1920  */
1921 
1923 {
1924  struct armv7a_common *armv7a = target_to_armv7a(target);
1925 
1926  LOG_DEBUG(" ");
1927 
1928  /* FIXME when halt is requested, make it work somehow... */
1929 
1930  /* This function can be called in "target not examined" state */
1931 
1932  /* Issue some kind of warm reset. */
1935  else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1936  /* REVISIT handle "pulls" cases, if there's
1937  * hardware that needs them to work.
1938  */
1939 
1940  /*
1941  * FIXME: fix reset when transport is not JTAG. This is a temporary
1942  * work-around for release v0.10 that is not intended to stay!
1943  */
1944  if (!transport_is_jtag() ||
1947 
1948  } else {
1949  LOG_ERROR("%s: how to reset?", target_name(target));
1950  return ERROR_FAIL;
1951  }
1952 
1953  /* registers are now invalid */
1954  if (armv7a->arm.core_cache)
1956 
1958 
1959  return ERROR_OK;
1960 }
1961 
1963 {
1964  struct armv7a_common *armv7a = target_to_armv7a(target);
1965  int retval;
1966 
1967  LOG_DEBUG(" ");
1968 
1969  /* be certain SRST is off */
1971 
1972  if (target_was_examined(target)) {
1973  retval = cortex_a_poll(target);
1974  if (retval != ERROR_OK)
1975  return retval;
1976  }
1977 
1978  if (target->reset_halt) {
1979  if (target->state != TARGET_HALTED) {
1980  LOG_WARNING("%s: ran after reset and before halt ...",
1981  target_name(target));
1982  if (target_was_examined(target)) {
1983  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1984  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1985  if (retval != ERROR_OK)
1986  return retval;
1987  } else
1989  }
1990  }
1991 
1992  return ERROR_OK;
1993 }
1994 
1995 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1996 {
1997  /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1998  * New desired mode must be in mode. Current value of DSCR must be in
1999  * *dscr, which is updated with new value.
2000  *
2001  * This function elides actually sending the mode-change over the debug
2002  * interface if the mode is already set as desired.
2003  */
2004  uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
2005  if (new_dscr != *dscr) {
2006  struct armv7a_common *armv7a = target_to_armv7a(target);
2007  int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2008  armv7a->debug_base + CPUDBG_DSCR, new_dscr);
2009  if (retval == ERROR_OK)
2010  *dscr = new_dscr;
2011  return retval;
2012  } else {
2013  return ERROR_OK;
2014  }
2015 }
2016 
2017 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
2018  uint32_t value, uint32_t *dscr)
2019 {
2020  /* Waits until the specified bit(s) of DSCR take on a specified value. */
2021  struct armv7a_common *armv7a = target_to_armv7a(target);
2022  int64_t then;
2023  int retval;
2024 
2025  if ((*dscr & mask) == value)
2026  return ERROR_OK;
2027 
2028  then = timeval_ms();
2029  while (1) {
2030  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2031  armv7a->debug_base + CPUDBG_DSCR, dscr);
2032  if (retval != ERROR_OK) {
2033  LOG_ERROR("Could not read DSCR register");
2034  return retval;
2035  }
2036  if ((*dscr & mask) == value)
2037  break;
2038  if (timeval_ms() > then + 1000) {
2039  LOG_ERROR("timeout waiting for DSCR bit change");
2040  return ERROR_FAIL;
2041  }
2042  }
2043  return ERROR_OK;
2044 }
2045 
2046 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
2047  uint32_t *data, uint32_t *dscr)
2048 {
2049  int retval;
2050  struct armv7a_common *armv7a = target_to_armv7a(target);
2051 
2052  /* Move from coprocessor to R0. */
2053  retval = cortex_a_exec_opcode(target, opcode, dscr);
2054  if (retval != ERROR_OK)
2055  return retval;
2056 
2057  /* Move from R0 to DTRTX. */
2058  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2059  if (retval != ERROR_OK)
2060  return retval;
2061 
2062  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2063  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2064  * must also check TXfull_l). Most of the time this will be free
2065  * because TXfull_l will be set immediately and cached in dscr. */
2067  DSCR_DTRTX_FULL_LATCHED, dscr);
2068  if (retval != ERROR_OK)
2069  return retval;
2070 
2071  /* Read the value transferred to DTRTX. */
2072  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2073  armv7a->debug_base + CPUDBG_DTRTX, data);
2074  if (retval != ERROR_OK)
2075  return retval;
2076 
2077  return ERROR_OK;
2078 }
2079 
2080 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2081  uint32_t *dfsr, uint32_t *dscr)
2082 {
2083  int retval;
2084 
2085  if (dfar) {
2086  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2087  if (retval != ERROR_OK)
2088  return retval;
2089  }
2090 
2091  if (dfsr) {
2092  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2093  if (retval != ERROR_OK)
2094  return retval;
2095  }
2096 
2097  return ERROR_OK;
2098 }
2099 
2100 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2101  uint32_t data, uint32_t *dscr)
2102 {
2103  int retval;
2104  struct armv7a_common *armv7a = target_to_armv7a(target);
2105 
2106  /* Write the value into DTRRX. */
2107  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2108  armv7a->debug_base + CPUDBG_DTRRX, data);
2109  if (retval != ERROR_OK)
2110  return retval;
2111 
2112  /* Move from DTRRX to R0. */
2113  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2114  if (retval != ERROR_OK)
2115  return retval;
2116 
2117  /* Move from R0 to coprocessor. */
2118  retval = cortex_a_exec_opcode(target, opcode, dscr);
2119  if (retval != ERROR_OK)
2120  return retval;
2121 
2122  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2123  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2124  * check RXfull_l). Most of the time this will be free because RXfull_l
2125  * will be cleared immediately and cached in dscr. */
2127  if (retval != ERROR_OK)
2128  return retval;
2129 
2130  return ERROR_OK;
2131 }
2132 
2133 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2134  uint32_t dfsr, uint32_t *dscr)
2135 {
2136  int retval;
2137 
2138  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2139  if (retval != ERROR_OK)
2140  return retval;
2141 
2142  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2143  if (retval != ERROR_OK)
2144  return retval;
2145 
2146  return ERROR_OK;
2147 }
2148 
2149 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2150 {
2151  uint32_t status, upper4;
2152 
2153  if (dfsr & (1 << 9)) {
2154  /* LPAE format. */
2155  status = dfsr & 0x3f;
2156  upper4 = status >> 2;
2157  if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2159  else if (status == 33)
2161  else
2162  return ERROR_TARGET_DATA_ABORT;
2163  } else {
2164  /* Normal format. */
2165  status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2166  if (status == 1)
2168  else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2169  status == 9 || status == 11 || status == 13 || status == 15)
2171  else
2172  return ERROR_TARGET_DATA_ABORT;
2173  }
2174 }
2175 
2177  uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2178 {
2179  /* Writes count objects of size size from *buffer. Old value of DSCR must
2180  * be in *dscr; updated to new value. This is slow because it works for
2181  * non-word-sized objects. Avoid unaligned accesses as they do not work
2182  * on memory address space without "Normal" attribute. If size == 4 and
2183  * the address is aligned, cortex_a_write_cpu_memory_fast should be
2184  * preferred.
2185  * Preconditions:
2186  * - Address is in R0.
2187  * - R0 is marked dirty.
2188  */
2189  struct armv7a_common *armv7a = target_to_armv7a(target);
2190  struct arm *arm = &armv7a->arm;
2191  int retval;
2192 
2193  /* Mark register R1 as dirty, to use for transferring data. */
2194  arm_reg_current(arm, 1)->dirty = true;
2195 
2196  /* Switch to non-blocking mode if not already in that mode. */
2198  if (retval != ERROR_OK)
2199  return retval;
2200 
2201  /* Go through the objects. */
2202  while (count) {
2203  /* Write the value to store into DTRRX. */
2204  uint32_t data, opcode;
2205  if (size == 1)
2206  data = *buffer;
2207  else if (size == 2)
2209  else
2211  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2212  armv7a->debug_base + CPUDBG_DTRRX, data);
2213  if (retval != ERROR_OK)
2214  return retval;
2215 
2216  /* Transfer the value from DTRRX to R1. */
2217  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2218  if (retval != ERROR_OK)
2219  return retval;
2220 
2221  /* Write the value transferred to R1 into memory. */
2222  if (size == 1)
2223  opcode = ARMV4_5_STRB_IP(1, 0);
2224  else if (size == 2)
2225  opcode = ARMV4_5_STRH_IP(1, 0);
2226  else
2227  opcode = ARMV4_5_STRW_IP(1, 0);
2228  retval = cortex_a_exec_opcode(target, opcode, dscr);
2229  if (retval != ERROR_OK)
2230  return retval;
2231 
2232  /* Check for faults and return early. */
2234  return ERROR_OK; /* A data fault is not considered a system failure. */
2235 
2236  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2237  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2238  * must also check RXfull_l). Most of the time this will be free
2239  * because RXfull_l will be cleared immediately and cached in dscr. */
2241  if (retval != ERROR_OK)
2242  return retval;
2243 
2244  /* Advance. */
2245  buffer += size;
2246  --count;
2247  }
2248 
2249  return ERROR_OK;
2250 }
2251 
2253  uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2254 {
2255  /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2256  * in *dscr; updated to new value. This is fast but only works for
2257  * word-sized objects at aligned addresses.
2258  * Preconditions:
2259  * - Address is in R0 and must be a multiple of 4.
2260  * - R0 is marked dirty.
2261  */
2262  struct armv7a_common *armv7a = target_to_armv7a(target);
2263  int retval;
2264 
2265  /* Switch to fast mode if not already in that mode. */
2267  if (retval != ERROR_OK)
2268  return retval;
2269 
2270  /* Latch STC instruction. */
2271  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2272  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2273  if (retval != ERROR_OK)
2274  return retval;
2275 
2276  /* Transfer all the data and issue all the instructions. */
2277  return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2278  4, count, armv7a->debug_base + CPUDBG_DTRRX);
2279 }
2280 
2282  uint32_t address, uint32_t size,
2283  uint32_t count, const uint8_t *buffer)
2284 {
2285  /* Write memory through the CPU. */
2286  int retval, final_retval;
2287  struct armv7a_common *armv7a = target_to_armv7a(target);
2288  struct arm *arm = &armv7a->arm;
2289  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2290 
2291  LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2292  address, size, count);
2293  if (target->state != TARGET_HALTED) {
2294  LOG_TARGET_ERROR(target, "not halted");
2295  return ERROR_TARGET_NOT_HALTED;
2296  }
2297 
2298  if (!count)
2299  return ERROR_OK;
2300 
2301  /* Clear any abort. */
2302  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2304  if (retval != ERROR_OK)
2305  return retval;
2306 
2307  /* Read DSCR. */
2308  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2309  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2310  if (retval != ERROR_OK)
2311  return retval;
2312 
2313  /* Switch to non-blocking mode if not already in that mode. */
2315  if (retval != ERROR_OK)
2316  return retval;
2317 
2318  /* Mark R0 as dirty. */
2319  arm_reg_current(arm, 0)->dirty = true;
2320 
2321  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2322  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2323  if (retval != ERROR_OK)
2324  return retval;
2325 
2326  /* Get the memory address into R0. */
2327  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2328  armv7a->debug_base + CPUDBG_DTRRX, address);
2329  if (retval != ERROR_OK)
2330  return retval;
2331  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2332  if (retval != ERROR_OK)
2333  return retval;
2334 
2335  if (size == 4 && (address % 4) == 0) {
2336  /* We are doing a word-aligned transfer, so use fast mode. */
2338  } else {
2339  /* Use slow path. Adjust size for aligned accesses */
2340  switch (address % 4) {
2341  case 1:
2342  case 3:
2343  count *= size;
2344  size = 1;
2345  break;
2346  case 2:
2347  if (size == 4) {
2348  count *= 2;
2349  size = 2;
2350  }
2351  case 0:
2352  default:
2353  break;
2354  }
2356  }
2357 
2358  final_retval = retval;
2359 
2360  /* Switch to non-blocking mode if not already in that mode. */
2362  if (final_retval == ERROR_OK)
2363  final_retval = retval;
2364 
2365  /* Wait for last issued instruction to complete. */
2366  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2367  if (final_retval == ERROR_OK)
2368  final_retval = retval;
2369 
2370  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2371  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2372  * check RXfull_l). Most of the time this will be free because RXfull_l
2373  * will be cleared immediately and cached in dscr. However, don't do this
2374  * if there is fault, because then the instruction might not have completed
2375  * successfully. */
2376  if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2378  if (retval != ERROR_OK)
2379  return retval;
2380  }
2381 
2382  /* If there were any sticky abort flags, clear them. */
2384  fault_dscr = dscr;
2388  } else {
2389  fault_dscr = 0;
2390  }
2391 
2392  /* Handle synchronous data faults. */
2393  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2394  if (final_retval == ERROR_OK) {
2395  /* Final return value will reflect cause of fault. */
2396  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2397  if (retval == ERROR_OK) {
2398  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2399  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2400  } else
2401  final_retval = retval;
2402  }
2403  /* Fault destroyed DFAR/DFSR; restore them. */
2404  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2405  if (retval != ERROR_OK)
2406  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2407  }
2408 
2409  /* Handle asynchronous data faults. */
2410  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2411  if (final_retval == ERROR_OK)
2412  /* No other error has been recorded so far, so keep this one. */
2413  final_retval = ERROR_TARGET_DATA_ABORT;
2414  }
2415 
2416  /* If the DCC is nonempty, clear it. */
2417  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2418  uint32_t dummy;
2419  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2420  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2421  if (final_retval == ERROR_OK)
2422  final_retval = retval;
2423  }
2424  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2425  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2426  if (final_retval == ERROR_OK)
2427  final_retval = retval;
2428  }
2429 
2430  /* Done. */
2431  return final_retval;
2432 }
2433 
2435  uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2436 {
2437  /* Reads count objects of size size into *buffer. Old value of DSCR must be
2438  * in *dscr; updated to new value. This is slow because it works for
2439  * non-word-sized objects. Avoid unaligned accesses as they do not work
2440  * on memory address space without "Normal" attribute. If size == 4 and
2441  * the address is aligned, cortex_a_read_cpu_memory_fast should be
2442  * preferred.
2443  * Preconditions:
2444  * - Address is in R0.
2445  * - R0 is marked dirty.
2446  */
2447  struct armv7a_common *armv7a = target_to_armv7a(target);
2448  struct arm *arm = &armv7a->arm;
2449  int retval;
2450 
2451  /* Mark register R1 as dirty, to use for transferring data. */
2452  arm_reg_current(arm, 1)->dirty = true;
2453 
2454  /* Switch to non-blocking mode if not already in that mode. */
2456  if (retval != ERROR_OK)
2457  return retval;
2458 
2459  /* Go through the objects. */
2460  while (count) {
2461  /* Issue a load of the appropriate size to R1. */
2462  uint32_t opcode, data;
2463  if (size == 1)
2464  opcode = ARMV4_5_LDRB_IP(1, 0);
2465  else if (size == 2)
2466  opcode = ARMV4_5_LDRH_IP(1, 0);
2467  else
2468  opcode = ARMV4_5_LDRW_IP(1, 0);
2469  retval = cortex_a_exec_opcode(target, opcode, dscr);
2470  if (retval != ERROR_OK)
2471  return retval;
2472 
2473  /* Issue a write of R1 to DTRTX. */
2474  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2475  if (retval != ERROR_OK)
2476  return retval;
2477 
2478  /* Check for faults and return early. */
2480  return ERROR_OK; /* A data fault is not considered a system failure. */
2481 
2482  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2483  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2484  * must also check TXfull_l). Most of the time this will be free
2485  * because TXfull_l will be set immediately and cached in dscr. */
2487  DSCR_DTRTX_FULL_LATCHED, dscr);
2488  if (retval != ERROR_OK)
2489  return retval;
2490 
2491  /* Read the value transferred to DTRTX into the buffer. */
2492  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2493  armv7a->debug_base + CPUDBG_DTRTX, &data);
2494  if (retval != ERROR_OK)
2495  return retval;
2496  if (size == 1)
2497  *buffer = (uint8_t) data;
2498  else if (size == 2)
2499  target_buffer_set_u16(target, buffer, (uint16_t) data);
2500  else
2502 
2503  /* Advance. */
2504  buffer += size;
2505  --count;
2506  }
2507 
2508  return ERROR_OK;
2509 }
2510 
2512  uint32_t count, uint8_t *buffer, uint32_t *dscr)
2513 {
2514  /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2515  * *dscr; updated to new value. This is fast but only works for word-sized
2516  * objects at aligned addresses.
2517  * Preconditions:
2518  * - Address is in R0 and must be a multiple of 4.
2519  * - R0 is marked dirty.
2520  */
2521  struct armv7a_common *armv7a = target_to_armv7a(target);
2522  uint32_t u32;
2523  int retval;
2524 
2525  /* Switch to non-blocking mode if not already in that mode. */
2527  if (retval != ERROR_OK)
2528  return retval;
2529 
2530  /* Issue the LDC instruction via a write to ITR. */
2531  retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2532  if (retval != ERROR_OK)
2533  return retval;
2534 
2535  count--;
2536 
2537  if (count > 0) {
2538  /* Switch to fast mode if not already in that mode. */
2540  if (retval != ERROR_OK)
2541  return retval;
2542 
2543  /* Latch LDC instruction. */
2544  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2545  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2546  if (retval != ERROR_OK)
2547  return retval;
2548 
2549  /* Read the value transferred to DTRTX into the buffer. Due to fast
2550  * mode rules, this blocks until the instruction finishes executing and
2551  * then reissues the read instruction to read the next word from
2552  * memory. The last read of DTRTX in this call reads the second-to-last
2553  * word from memory and issues the read instruction for the last word.
2554  */
2555  retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2556  4, count, armv7a->debug_base + CPUDBG_DTRTX);
2557  if (retval != ERROR_OK)
2558  return retval;
2559 
2560  /* Advance. */
2561  buffer += count * 4;
2562  }
2563 
2564  /* Wait for last issued instruction to complete. */
2565  retval = cortex_a_wait_instrcmpl(target, dscr, false);
2566  if (retval != ERROR_OK)
2567  return retval;
2568 
2569  /* Switch to non-blocking mode if not already in that mode. */
2571  if (retval != ERROR_OK)
2572  return retval;
2573 
2574  /* Check for faults and return early. */
2576  return ERROR_OK; /* A data fault is not considered a system failure. */
2577 
2578  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2579  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2580  * check TXfull_l). Most of the time this will be free because TXfull_l
2581  * will be set immediately and cached in dscr. */
2583  DSCR_DTRTX_FULL_LATCHED, dscr);
2584  if (retval != ERROR_OK)
2585  return retval;
2586 
2587  /* Read the value transferred to DTRTX into the buffer. This is the last
2588  * word. */
2589  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2590  armv7a->debug_base + CPUDBG_DTRTX, &u32);
2591  if (retval != ERROR_OK)
2592  return retval;
2594 
2595  return ERROR_OK;
2596 }
2597 
2599  uint32_t address, uint32_t size,
2600  uint32_t count, uint8_t *buffer)
2601 {
2602  /* Read memory through the CPU. */
2603  int retval, final_retval;
2604  struct armv7a_common *armv7a = target_to_armv7a(target);
2605  struct arm *arm = &armv7a->arm;
2606  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2607 
2608  LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2609  address, size, count);
2610  if (target->state != TARGET_HALTED) {
2611  LOG_TARGET_ERROR(target, "not halted");
2612  return ERROR_TARGET_NOT_HALTED;
2613  }
2614 
2615  if (!count)
2616  return ERROR_OK;
2617 
2618  /* Clear any abort. */
2619  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2621  if (retval != ERROR_OK)
2622  return retval;
2623 
2624  /* Read DSCR */
2625  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2626  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2627  if (retval != ERROR_OK)
2628  return retval;
2629 
2630  /* Switch to non-blocking mode if not already in that mode. */
2632  if (retval != ERROR_OK)
2633  return retval;
2634 
2635  /* Mark R0 as dirty. */
2636  arm_reg_current(arm, 0)->dirty = true;
2637 
2638  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2639  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2640  if (retval != ERROR_OK)
2641  return retval;
2642 
2643  /* Get the memory address into R0. */
2644  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2645  armv7a->debug_base + CPUDBG_DTRRX, address);
2646  if (retval != ERROR_OK)
2647  return retval;
2648  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2649  if (retval != ERROR_OK)
2650  return retval;
2651 
2652  if (size == 4 && (address % 4) == 0) {
2653  /* We are doing a word-aligned transfer, so use fast mode. */
2654  retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2655  } else {
2656  /* Use slow path. Adjust size for aligned accesses */
2657  switch (address % 4) {
2658  case 1:
2659  case 3:
2660  count *= size;
2661  size = 1;
2662  break;
2663  case 2:
2664  if (size == 4) {
2665  count *= 2;
2666  size = 2;
2667  }
2668  break;
2669  case 0:
2670  default:
2671  break;
2672  }
2674  }
2675 
2676  final_retval = retval;
2677 
2678  /* Switch to non-blocking mode if not already in that mode. */
2680  if (final_retval == ERROR_OK)
2681  final_retval = retval;
2682 
2683  /* Wait for last issued instruction to complete. */
2684  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2685  if (final_retval == ERROR_OK)
2686  final_retval = retval;
2687 
2688  /* If there were any sticky abort flags, clear them. */
2690  fault_dscr = dscr;
2694  } else {
2695  fault_dscr = 0;
2696  }
2697 
2698  /* Handle synchronous data faults. */
2699  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2700  if (final_retval == ERROR_OK) {
2701  /* Final return value will reflect cause of fault. */
2702  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2703  if (retval == ERROR_OK) {
2704  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2705  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2706  } else
2707  final_retval = retval;
2708  }
2709  /* Fault destroyed DFAR/DFSR; restore them. */
2710  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2711  if (retval != ERROR_OK)
2712  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2713  }
2714 
2715  /* Handle asynchronous data faults. */
2716  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2717  if (final_retval == ERROR_OK)
2718  /* No other error has been recorded so far, so keep this one. */
2719  final_retval = ERROR_TARGET_DATA_ABORT;
2720  }
2721 
2722  /* If the DCC is nonempty, clear it. */
2723  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2724  uint32_t dummy;
2725  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2726  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2727  if (final_retval == ERROR_OK)
2728  final_retval = retval;
2729  }
2730  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2731  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2732  if (final_retval == ERROR_OK)
2733  final_retval = retval;
2734  }
2735 
2736  /* Done. */
2737  return final_retval;
2738 }
2739 
2740 
2741 /*
2742  * Cortex-A Memory access
2743  *
2744  * This is same Cortex-M3 but we must also use the correct
2745  * ap number for every access.
2746  */
2747 
2749  target_addr_t address, uint32_t size,
2750  uint32_t count, uint8_t *buffer)
2751 {
2752  int retval;
2753 
2754  if (!count || !buffer)
2756 
2757  LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2758  address, size, count);
2759 
2760  /* read memory through the CPU */
2764 
2765  return retval;
2766 }
2767 
2769  uint32_t size, uint32_t count, uint8_t *buffer)
2770 {
2771  int retval;
2772 
2773  /* cortex_a handles unaligned memory access */
2774  LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2775  address, size, count);
2776 
2780 
2781  return retval;
2782 }
2783 
2785  target_addr_t address, uint32_t size,
2786  uint32_t count, const uint8_t *buffer)
2787 {
2788  int retval;
2789 
2790  if (!count || !buffer)
2792 
2793  LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2794  address, size, count);
2795 
2796  /* write memory through the CPU */
2800 
2801  return retval;
2802 }
2803 
2805  uint32_t size, uint32_t count, const uint8_t *buffer)
2806 {
2807  int retval;
2808 
2809  /* cortex_a handles unaligned memory access */
2810  LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2811  address, size, count);
2812 
2816  return retval;
2817 }
2818 
2820  uint32_t count, uint8_t *buffer)
2821 {
2822  uint32_t size;
2823 
2824  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2825  * will have something to do with the size we leave to it. */
2826  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2827  if (address & size) {
2828  int retval = target_read_memory(target, address, size, 1, buffer);
2829  if (retval != ERROR_OK)
2830  return retval;
2831  address += size;
2832  count -= size;
2833  buffer += size;
2834  }
2835  }
2836 
2837  /* Read the data with as large access size as possible. */
2838  for (; size > 0; size /= 2) {
2839  uint32_t aligned = count - count % size;
2840  if (aligned > 0) {
2841  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2842  if (retval != ERROR_OK)
2843  return retval;
2844  address += aligned;
2845  count -= aligned;
2846  buffer += aligned;
2847  }
2848  }
2849 
2850  return ERROR_OK;
2851 }
2852 
2854  uint32_t count, const uint8_t *buffer)
2855 {
2856  uint32_t size;
2857 
2858  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2859  * will have something to do with the size we leave to it. */
2860  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2861  if (address & size) {
2862  int retval = target_write_memory(target, address, size, 1, buffer);
2863  if (retval != ERROR_OK)
2864  return retval;
2865  address += size;
2866  count -= size;
2867  buffer += size;
2868  }
2869  }
2870 
2871  /* Write the data with as large access size as possible. */
2872  for (; size > 0; size /= 2) {
2873  uint32_t aligned = count - count % size;
2874  if (aligned > 0) {
2875  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2876  if (retval != ERROR_OK)
2877  return retval;
2878  address += aligned;
2879  count -= aligned;
2880  buffer += aligned;
2881  }
2882  }
2883 
2884  return ERROR_OK;
2885 }
2886 
2888 {
2889  struct target *target = priv;
2890  struct armv7a_common *armv7a = target_to_armv7a(target);
2891  int retval;
2892 
2894  return ERROR_OK;
2895  if (!target->dbg_msg_enabled)
2896  return ERROR_OK;
2897 
2898  if (target->state == TARGET_RUNNING) {
2899  uint32_t request;
2900  uint32_t dscr;
2901  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2902  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2903 
2904  /* check if we have data */
2905  int64_t then = timeval_ms();
2906  while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2907  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2908  armv7a->debug_base + CPUDBG_DTRTX, &request);
2909  if (retval == ERROR_OK) {
2910  target_request(target, request);
2911  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2912  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2913  }
2914  if (timeval_ms() > then + 1000) {
2915  LOG_ERROR("Timeout waiting for dtr tx full");
2916  return ERROR_FAIL;
2917  }
2918  }
2919  }
2920 
2921  return ERROR_OK;
2922 }
2923 
2924 /*
2925  * Cortex-A target information and configuration
2926  */
2927 
2929 {
2930  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2931  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2932  struct adiv5_dap *swjdp = armv7a->arm.dap;
2934 
2935  int i;
2936  int retval = ERROR_OK;
2937  uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2938 
2939  if (!armv7a->debug_ap) {
2940  if (pc->ap_num == DP_APSEL_INVALID) {
2941  /* Search for the APB-AP - it is needed for access to debug registers */
2942  retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2943  if (retval != ERROR_OK) {
2944  LOG_ERROR("Could not find APB-AP for debug access");
2945  return retval;
2946  }
2947  } else {
2948  armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2949  if (!armv7a->debug_ap) {
2950  LOG_ERROR("Cannot get AP");
2951  return ERROR_FAIL;
2952  }
2953  }
2954  }
2955 
2956  retval = mem_ap_init(armv7a->debug_ap);
2957  if (retval != ERROR_OK) {
2958  LOG_ERROR("Could not initialize the APB-AP");
2959  return retval;
2960  }
2961 
2962  armv7a->debug_ap->memaccess_tck = 80;
2963 
2964  if (!target->dbgbase_set) {
2965  LOG_TARGET_DEBUG(target, "dbgbase is not set, trying to detect using the ROM table");
2966  /* Lookup Processor DAP */
2968  &armv7a->debug_base, target->coreid);
2969  if (retval != ERROR_OK) {
2970  LOG_TARGET_ERROR(target, "Can't detect dbgbase from the ROM table; you need to specify it explicitly");
2971  return retval;
2972  }
2973  LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2974  target->coreid, armv7a->debug_base);
2975  } else
2976  armv7a->debug_base = target->dbgbase;
2977 
2978  if ((armv7a->debug_base & (1UL<<31)) == 0)
2980  "Debug base address has bit 31 set to 0. Access to debug registers will likely fail!\n"
2981  "Please fix the target configuration");
2982 
2983  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2984  armv7a->debug_base + CPUDBG_DIDR, &didr);
2985  if (retval != ERROR_OK) {
2986  LOG_DEBUG("Examine %s failed", "DIDR");
2987  return retval;
2988  }
2989 
2990  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991  armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2992  if (retval != ERROR_OK) {
2993  LOG_DEBUG("Examine %s failed", "CPUID");
2994  return retval;
2995  }
2996 
2997  LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2998  LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2999 
3000  cortex_a->didr = didr;
3001  cortex_a->cpuid = cpuid;
3002 
3003  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3004  armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3005  if (retval != ERROR_OK)
3006  return retval;
3007  LOG_TARGET_DEBUG(target, "DBGPRSR 0x%" PRIx32, dbg_osreg);
3008 
3009  if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3010  LOG_TARGET_ERROR(target, "powered down!");
3011  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3012  return ERROR_TARGET_INIT_FAILED;
3013  }
3014 
3015  if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3016  LOG_TARGET_DEBUG(target, "was reset!");
3017 
3018  /* Read DBGOSLSR and check if OSLK is implemented */
3019  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3020  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3021  if (retval != ERROR_OK)
3022  return retval;
3023  LOG_TARGET_DEBUG(target, "DBGOSLSR 0x%" PRIx32, dbg_osreg);
3024 
3025  /* check if OS Lock is implemented */
3026  if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3027  /* check if OS Lock is set */
3028  if (dbg_osreg & OSLSR_OSLK) {
3029  LOG_TARGET_DEBUG(target, "OSLock set! Trying to unlock");
3030 
3031  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3032  armv7a->debug_base + CPUDBG_OSLAR,
3033  0);
3034  if (retval == ERROR_OK)
3035  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3036  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3037 
3038  /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3039  if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3040  LOG_TARGET_ERROR(target, "OSLock sticky, core not powered?");
3041  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3042  return ERROR_TARGET_INIT_FAILED;
3043  }
3044  }
3045  }
3046 
3047  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3048  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
3049  if (retval != ERROR_OK)
3050  return retval;
3051 
3052  if (dbg_idpfr1 & 0x000000f0) {
3053  LOG_TARGET_DEBUG(target, "has security extensions");
3055  }
3056  if (dbg_idpfr1 & 0x0000f000) {
3057  LOG_TARGET_DEBUG(target, "has virtualization extensions");
3058  /*
3059  * overwrite and simplify the checks.
3060  * virtualization extensions require implementation of security extension
3061  */
3063  }
3064 
3065  /* Avoid recreating the registers cache */
3066  if (!target_was_examined(target)) {
3067  retval = cortex_a_dpm_setup(cortex_a, didr);
3068  if (retval != ERROR_OK)
3069  return retval;
3070  }
3071 
3072  /* Setup Breakpoint Register Pairs */
3073  cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3074  cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3075  cortex_a->brp_num_available = cortex_a->brp_num;
3076  free(cortex_a->brp_list);
3077  cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3078 /* cortex_a->brb_enabled = ????; */
3079  for (i = 0; i < cortex_a->brp_num; i++) {
3080  cortex_a->brp_list[i].used = false;
3081  if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3082  cortex_a->brp_list[i].type = BRP_NORMAL;
3083  else
3084  cortex_a->brp_list[i].type = BRP_CONTEXT;
3085  cortex_a->brp_list[i].value = 0;
3086  cortex_a->brp_list[i].control = 0;
3087  cortex_a->brp_list[i].brpn = i;
3088  }
3089 
3090  LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3091 
3092  /* Setup Watchpoint Register Pairs */
3093  cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3094  cortex_a->wrp_num_available = cortex_a->wrp_num;
3095  free(cortex_a->wrp_list);
3096  cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3097  for (i = 0; i < cortex_a->wrp_num; i++) {
3098  cortex_a->wrp_list[i].used = false;
3099  cortex_a->wrp_list[i].value = 0;
3100  cortex_a->wrp_list[i].control = 0;
3101  cortex_a->wrp_list[i].wrpn = i;
3102  }
3103 
3104  LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3105 
3106  /* select debug_ap as default */
3107  swjdp->apsel = armv7a->debug_ap->ap_num;
3108 
3110  return ERROR_OK;
3111 }
3112 
3113 static int cortex_a_examine(struct target *target)
3114 {
3115  int retval = ERROR_OK;
3116 
3117  /* Reestablish communication after target reset */
3118  retval = cortex_a_examine_first(target);
3119 
3120  /* Configure core debug access */
3121  if (retval == ERROR_OK)
3123 
3124  return retval;
3125 }
3126 
3127 /*
3128  * Cortex-A target creation and initialization
3129  */
3130 
3131 static int cortex_a_init_target(struct command_context *cmd_ctx,
3132  struct target *target)
3133 {
3134  /* examine_first() does a bunch of this */
3136  return ERROR_OK;
3137 }
3138 
3140  struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3141 {
3142  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3143 
3144  /* Setup struct cortex_a_common */
3145  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3146  armv7a->arm.dap = dap;
3147 
3148  /* register arch-specific functions */
3149  armv7a->examine_debug_reason = NULL;
3150 
3152 
3153  armv7a->pre_restore_context = NULL;
3154 
3156 
3157 
3158 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3159 
3160  /* REVISIT v7a setup should be in a v7a-specific routine */
3161  armv7a_init_arch_info(target, armv7a);
3164 
3165  return ERROR_OK;
3166 }
3167 
3169 {
3170  struct cortex_a_common *cortex_a;
3171  struct adiv5_private_config *pc;
3172 
3173  if (!target->private_config)
3174  return ERROR_FAIL;
3175 
3176  pc = (struct adiv5_private_config *)target->private_config;
3177 
3178  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3179  if (!cortex_a) {
3180  LOG_ERROR("Out of memory");
3181  return ERROR_FAIL;
3182  }
3183  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3184  cortex_a->armv7a_common.is_armv7r = false;
3186 
3187  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3188 }
3189 
3191 {
3192  struct cortex_a_common *cortex_a;
3193  struct adiv5_private_config *pc;
3194 
3195  pc = (struct adiv5_private_config *)target->private_config;
3196  if (adiv5_verify_config(pc) != ERROR_OK)
3197  return ERROR_FAIL;
3198 
3199  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3200  if (!cortex_a) {
3201  LOG_ERROR("Out of memory");
3202  return ERROR_FAIL;
3203  }
3204  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3205  cortex_a->armv7a_common.is_armv7r = true;
3206 
3207  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3208 }
3209 
3211 {
3212  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3213  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3214  struct arm_dpm *dpm = &armv7a->dpm;
3215  uint32_t dscr;
3216  int retval;
3217 
3218  if (target_was_examined(target)) {
3219  /* Disable halt for breakpoint, watchpoint and vector catch */
3220  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3221  armv7a->debug_base + CPUDBG_DSCR, &dscr);
3222  if (retval == ERROR_OK)
3224  armv7a->debug_base + CPUDBG_DSCR,
3226  }
3227 
3228  if (armv7a->debug_ap)
3229  dap_put_ap(armv7a->debug_ap);
3230 
3231  free(cortex_a->wrp_list);
3232  free(cortex_a->brp_list);
3233  arm_free_reg_cache(dpm->arm);
3234  free(dpm->dbp);
3235  free(dpm->dwp);
3236  free(target->private_config);
3237  free(cortex_a);
3238 }
3239 
3240 static int cortex_a_mmu(struct target *target, int *enabled)
3241 {
3242  struct armv7a_common *armv7a = target_to_armv7a(target);
3243 
3244  if (target->state != TARGET_HALTED) {
3245  LOG_TARGET_ERROR(target, "not halted");
3246  return ERROR_TARGET_NOT_HALTED;
3247  }
3248 
3249  if (armv7a->is_armv7r)
3250  *enabled = 0;
3251  else
3253 
3254  return ERROR_OK;
3255 }
3256 
3257 static int cortex_a_virt2phys(struct target *target,
3258  target_addr_t virt, target_addr_t *phys)
3259 {
3260  int retval;
3261  int mmu_enabled = 0;
3262 
3263  /*
3264  * If the MMU was not enabled at debug entry, there is no
3265  * way of knowing if there was ever a valid configuration
3266  * for it and thus it's not safe to enable it. In this case,
3267  * just return the virtual address as physical.
3268  */
3269  cortex_a_mmu(target, &mmu_enabled);
3270  if (!mmu_enabled) {
3271  *phys = virt;
3272  return ERROR_OK;
3273  }
3274 
3275  /* mmu must be enable in order to get a correct translation */
3276  retval = cortex_a_mmu_modify(target, 1);
3277  if (retval != ERROR_OK)
3278  return retval;
3279  return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3280  phys, 1);
3281 }
3282 
3283 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3284 {
3286  struct armv7a_common *armv7a = target_to_armv7a(target);
3287 
3289  &armv7a->armv7a_mmu.armv7a_cache);
3290 }
3291 
3292 
3293 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3294 {
3296  if (!target_was_examined(target)) {
3297  LOG_ERROR("target not examined yet");
3298  return ERROR_FAIL;
3299  }
3300 
3302 }
3303 
3304 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3305 {
3307  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3308 
3309  static const struct nvp nvp_maskisr_modes[] = {
3310  { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3311  { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3312  { .name = NULL, .value = -1 },
3313  };
3314  const struct nvp *n;
3315 
3316  if (CMD_ARGC > 0) {
3317  n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3318  if (!n->name) {
3319  LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3321  }
3322 
3323  cortex_a->isrmasking_mode = n->value;
3324  }
3325 
3326  n = nvp_value2name(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3327  command_print(CMD, "cortex_a interrupt mask %s", n->name);
3328 
3329  return ERROR_OK;
3330 }
3331 
3332 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3333 {
3335  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3336 
3337  static const struct nvp nvp_dacrfixup_modes[] = {
3338  { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3339  { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3340  { .name = NULL, .value = -1 },
3341  };
3342  const struct nvp *n;
3343 
3344  if (CMD_ARGC > 0) {
3345  n = nvp_name2value(nvp_dacrfixup_modes, CMD_ARGV[0]);
3346  if (!n->name)
3348  cortex_a->dacrfixup_mode = n->value;
3349 
3350  }
3351 
3352  n = nvp_value2name(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3353  command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3354 
3355  return ERROR_OK;
3356 }
3357 
3358 static const struct command_registration cortex_a_exec_command_handlers[] = {
3359  {
3360  .name = "cache_info",
3361  .handler = cortex_a_handle_cache_info_command,
3362  .mode = COMMAND_EXEC,
3363  .help = "display information about target caches",
3364  .usage = "",
3365  },
3366  {
3367  .name = "dbginit",
3368  .handler = cortex_a_handle_dbginit_command,
3369  .mode = COMMAND_EXEC,
3370  .help = "Initialize core debug",
3371  .usage = "",
3372  },
3373  {
3374  .name = "maskisr",
3375  .handler = handle_cortex_a_mask_interrupts_command,
3376  .mode = COMMAND_ANY,
3377  .help = "mask cortex_a interrupts",
3378  .usage = "['on'|'off']",
3379  },
3380  {
3381  .name = "dacrfixup",
3382  .handler = handle_cortex_a_dacrfixup_command,
3383  .mode = COMMAND_ANY,
3384  .help = "set domain access control (DACR) to all-manager "
3385  "on memory access",
3386  .usage = "['on'|'off']",
3387  },
3388  {
3389  .chain = armv7a_mmu_command_handlers,
3390  },
3391  {
3393  },
3394 
3396 };
3397 static const struct command_registration cortex_a_command_handlers[] = {
3398  {
3400  },
3401  {
3403  },
3404  {
3405  .name = "cortex_a",
3406  .mode = COMMAND_ANY,
3407  .help = "Cortex-A command group",
3408  .usage = "",
3410  },
3412 };
3413 
3414 struct target_type cortexa_target = {
3415  .name = "cortex_a",
3416 
3417  .poll = cortex_a_poll,
3418  .arch_state = armv7a_arch_state,
3419 
3420  .halt = cortex_a_halt,
3421  .resume = cortex_a_resume,
3422  .step = cortex_a_step,
3423 
3424  .assert_reset = cortex_a_assert_reset,
3425  .deassert_reset = cortex_a_deassert_reset,
3426 
3427  /* REVISIT allow exporting VFP3 registers ... */
3428  .get_gdb_arch = arm_get_gdb_arch,
3429  .get_gdb_reg_list = arm_get_gdb_reg_list,
3430 
3431  .read_memory = cortex_a_read_memory,
3432  .write_memory = cortex_a_write_memory,
3433 
3434  .read_buffer = cortex_a_read_buffer,
3435  .write_buffer = cortex_a_write_buffer,
3436 
3437  .checksum_memory = arm_checksum_memory,
3438  .blank_check_memory = arm_blank_check_memory,
3439 
3440  .run_algorithm = armv4_5_run_algorithm,
3441 
3442  .add_breakpoint = cortex_a_add_breakpoint,
3443  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3444  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3445  .remove_breakpoint = cortex_a_remove_breakpoint,
3446  .add_watchpoint = cortex_a_add_watchpoint,
3447  .remove_watchpoint = cortex_a_remove_watchpoint,
3448 
3449  .commands = cortex_a_command_handlers,
3450  .target_create = cortex_a_target_create,
3451  .target_jim_configure = adiv5_jim_configure,
3452  .init_target = cortex_a_init_target,
3453  .examine = cortex_a_examine,
3454  .deinit_target = cortex_a_deinit_target,
3455 
3456  .read_phys_memory = cortex_a_read_phys_memory,
3457  .write_phys_memory = cortex_a_write_phys_memory,
3458  .mmu = cortex_a_mmu,
3459  .virt2phys = cortex_a_virt2phys,
3460 };
3461 
3462 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3463  {
3464  .name = "dbginit",
3465  .handler = cortex_a_handle_dbginit_command,
3466  .mode = COMMAND_EXEC,
3467  .help = "Initialize core debug",
3468  .usage = "",
3469  },
3470  {
3471  .name = "maskisr",
3472  .handler = handle_cortex_a_mask_interrupts_command,
3473  .mode = COMMAND_EXEC,
3474  .help = "mask cortex_r4 interrupts",
3475  .usage = "['on'|'off']",
3476  },
3477 
3479 };
3480 static const struct command_registration cortex_r4_command_handlers[] = {
3481  {
3483  },
3484  {
3485  .name = "cortex_r4",
3486  .mode = COMMAND_ANY,
3487  .help = "Cortex-R4 command group",
3488  .usage = "",
3490  },
3492 };
3493 
3494 struct target_type cortexr4_target = {
3495  .name = "cortex_r4",
3496 
3497  .poll = cortex_a_poll,
3498  .arch_state = armv7a_arch_state,
3499 
3500  .halt = cortex_a_halt,
3501  .resume = cortex_a_resume,
3502  .step = cortex_a_step,
3503 
3504  .assert_reset = cortex_a_assert_reset,
3505  .deassert_reset = cortex_a_deassert_reset,
3506 
3507  /* REVISIT allow exporting VFP3 registers ... */
3508  .get_gdb_arch = arm_get_gdb_arch,
3509  .get_gdb_reg_list = arm_get_gdb_reg_list,
3510 
3511  .read_memory = cortex_a_read_phys_memory,
3512  .write_memory = cortex_a_write_phys_memory,
3513 
3514  .checksum_memory = arm_checksum_memory,
3515  .blank_check_memory = arm_blank_check_memory,
3516 
3517  .run_algorithm = armv4_5_run_algorithm,
3518 
3519  .add_breakpoint = cortex_a_add_breakpoint,
3520  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3521  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3522  .remove_breakpoint = cortex_a_remove_breakpoint,
3523  .add_watchpoint = cortex_a_add_watchpoint,
3524  .remove_watchpoint = cortex_a_remove_watchpoint,
3525 
3526  .commands = cortex_r4_command_handlers,
3527  .target_create = cortex_r4_target_create,
3528  .target_jim_configure = adiv5_jim_configure,
3529  .init_target = cortex_a_init_target,
3530  .examine = cortex_a_examine,
3531  .deinit_target = cortex_a_deinit_target,
3532 };
#define BRP_CONTEXT
Definition: aarch64.h:23
#define CPUDBG_CPUID
Definition: aarch64.h:14
#define BRP_NORMAL
Definition: aarch64.h:22
#define CPUDBG_LOCKACCESS
Definition: aarch64.h:19
int arm_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Runs ARM code in the target to check whether a memory block holds all ones.
Definition: armv4_5.c:1687
struct reg * arm_reg_current(struct arm *arm, unsigned int regnum)
Returns handle to the register currently mapped to a given number.
Definition: armv4_5.c:516
@ ARM_VFP_V3
Definition: arm.h:163
int arm_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Runs ARM code in the target to calculate a CRC32 checksum.
Definition: armv4_5.c:1614
const char * arm_get_gdb_arch(const struct target *target)
Definition: armv4_5.c:1281
int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Definition: armv4_5.c:1286
@ ARM_MODE_ANY
Definition: arm.h:106
@ ARM_MODE_SVC
Definition: arm.h:86
void arm_free_reg_cache(struct arm *arm)
Definition: armv4_5.c:775
@ ARM_STATE_JAZELLE
Definition: arm.h:153
@ ARM_STATE_THUMB
Definition: arm.h:152
@ ARM_STATE_ARM
Definition: arm.h:151
@ ARM_STATE_AARCH64
Definition: arm.h:155
@ ARM_STATE_THUMB_EE
Definition: arm.h:154
const struct command_registration arm_command_handlers[]
Definition: armv4_5.c:1261
int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Definition: armv4_5.c:1588
@ ARM_CORE_TYPE_SEC_EXT
Definition: arm.h:47
@ ARM_CORE_TYPE_VIRT_EXT
Definition: arm.h:48
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2287
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:734
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2486
int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Asynchronous (queued) write of a word to memory or a system register.
Definition: arm_adi_v5.c:289
int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2481
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1107
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:740
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:266
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1189
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1209
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:888
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:318
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:491
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:110
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:648
#define ARM_CS_C9_DEVTYPE_CORE_DEBUG
Definition: arm_coresight.h:88
void arm_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
Definition: arm_dpm.c:1055
int arm_dpm_read_current_registers(struct arm_dpm *dpm)
Read basic registers of the current context: R0 to R15, and CPSR; sets the core mode (such as USR or ...
Definition: arm_dpm.c:377
int arm_dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
Definition: arm_dpm.c:146
int arm_dpm_setup(struct arm_dpm *dpm)
Hooks up this DPM to its associated target; call only once.
Definition: arm_dpm.c:1093
int arm_dpm_read_reg(struct arm_dpm *dpm, struct reg *r, unsigned int regnum)
Definition: arm_dpm.c:208
int arm_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
Writes all modified core registers for all processor modes.
Definition: arm_dpm.c:485
void arm_dpm_report_wfar(struct arm_dpm *dpm, uint32_t addr)
Definition: arm_dpm.c:1031
int arm_dpm_initialize(struct arm_dpm *dpm)
Reinitializes DPM state at the beginning of a new debug session or after a reset which may have affec...
Definition: arm_dpm.c:1160
#define OSLSR_OSLM
Definition: arm_dpm.h:248
#define DRCR_HALT
Definition: arm_dpm.h:223
#define DSCR_INSTR_COMP
Definition: arm_dpm.h:190
#define DRCR_CLEAR_EXCEPTIONS
Definition: arm_dpm.h:225
#define DSCR_INT_DIS
Definition: arm_dpm.h:180
#define OSLSR_OSLM0
Definition: arm_dpm.h:244
#define DSCR_STICKY_ABORT_IMPRECISE
Definition: arm_dpm.h:176
#define DSCR_EXT_DCC_FAST_MODE
Definition: arm_dpm.h:216
#define OSLSR_OSLK
Definition: arm_dpm.h:245
#define DSCR_DTR_TX_FULL
Definition: arm_dpm.h:194
#define DSCR_DTRRX_FULL_LATCHED
Definition: arm_dpm.h:193
#define DRCR_RESTART
Definition: arm_dpm.h:224
#define DSCR_RUN_MODE(dscr)
Definition: arm_dpm.h:198
#define DSCR_STICKY_ABORT_PRECISE
Definition: arm_dpm.h:175
#define OSLSR_OSLM1
Definition: arm_dpm.h:247
#define DSCR_CORE_HALTED
Definition: arm_dpm.h:172
#define DSCR_ITR_EN
Definition: arm_dpm.h:182
#define DSCR_EXT_DCC_NON_BLOCKING
Definition: arm_dpm.h:214
#define PRSR_STICKY_RESET_STATUS
Definition: arm_dpm.h:238
#define PRSR_POWERUP_STATUS
Definition: arm_dpm.h:235
#define DSCR_EXT_DCC_MASK
Definition: arm_dpm.h:189
#define DSCR_DTR_RX_FULL
Definition: arm_dpm.h:195
#define DSCR_CORE_RESTARTED
Definition: arm_dpm.h:173
#define DSCR_HALT_DBG_MODE
Definition: arm_dpm.h:183
#define DSCR_DTRTX_FULL_LATCHED
Definition: arm_dpm.h:192
Macros used to generate various ARM or Thumb opcodes.
#define ARMV5_BKPT(im)
Definition: arm_opcodes.h:227
#define ARMV4_5_STC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:159
#define ARMV5_T_BKPT(im)
Definition: arm_opcodes.h:313
#define ARMV4_5_LDC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:174
#define ARMV4_5_MRC(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:186
#define ARMV4_5_STRH_IP(rd, rn)
Definition: arm_opcodes.h:105
#define ARMV4_5_MCR(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:209
#define ARMV4_5_LDRH_IP(rd, rn)
Definition: arm_opcodes.h:87
#define ARMV4_5_LDRB_IP(rd, rn)
Definition: arm_opcodes.h:93
#define ARMV4_5_LDRW_IP(rd, rn)
Definition: arm_opcodes.h:81
#define ARMV4_5_STRW_IP(rd, rn)
Definition: arm_opcodes.h:99
#define ARMV4_5_STRB_IP(rd, rn)
Definition: arm_opcodes.h:111
int arm_semihosting(struct target *target, int *retval)
Checks for and processes an ARM semihosting request.
int arm_semihosting_init(struct target *target)
Initialize ARM semihosting support.
enum arm_mode mode
Definition: armv4_5.c:281
int armv7a_handle_cache_info_command(struct command_invocation *cmd, struct armv7a_cache_common *armv7a_cache)
Definition: armv7a.c:182
int armv7a_read_ttbcr(struct target *target)
Definition: armv7a.c:118
int armv7a_arch_state(struct target *target)
Definition: armv7a.c:482
const struct command_registration armv7a_command_handlers[]
Definition: armv7a.c:515
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a)
Definition: armv7a.c:466
int armv7a_identify_cache(struct target *target)
Definition: armv7a.c:315
#define CPUDBG_DSMCR
Definition: armv7a.h:164
#define CPUDBG_DSCCR
Definition: armv7a.h:163
#define CPUDBG_OSLAR
Definition: armv7a.h:157
#define CPUDBG_BCR_BASE
Definition: armv7a.h:151
#define CPUDBG_OSLSR
Definition: armv7a.h:158
#define CPUDBG_DSCR
Definition: armv7a.h:139
#define CPUDBG_DRCR
Definition: armv7a.h:140
#define CPUDBG_DIDR
Definition: armv7a.h:134
#define CPUDBG_WCR_BASE
Definition: armv7a.h:153
#define CPUDBG_DTRTX
Definition: armv7a.h:147
static struct armv7a_common * target_to_armv7a(struct target *target)
Definition: armv7a.h:120
#define CPUDBG_WVR_BASE
Definition: armv7a.h:152
#define CPUDBG_WFAR
Definition: armv7a.h:137
#define CPUDBG_BVR_BASE
Definition: armv7a.h:150
#define CPUDBG_DTRRX
Definition: armv7a.h:145
#define CPUDBG_PRSR
Definition: armv7a.h:142
#define CPUDBG_ITR
Definition: armv7a.h:146
#define CPUDBG_ID_PFR1
Definition: armv7a.h:170
int armv7a_l1_i_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:335
int armv7a_cache_flush_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:384
int armv7a_l1_d_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:146
const struct command_registration armv7a_mmu_command_handlers[]
Definition: armv7a_mmu.c:359
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va, target_addr_t *val, int meminfo)
Definition: armv7a_mmu.c:27
@ ARMV7M_PRIMASK
Definition: armv7m.h:145
@ ARMV7M_XPSR
Definition: armv7m.h:128
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word.
Definition: binarybuffer.h:104
static void buf_set_u32(uint8_t *_buffer, unsigned int first, unsigned int num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:34
struct breakpoint * breakpoint_find(struct target *target, target_addr_t address)
Definition: breakpoints.c:489
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
static void watchpoint_set(struct watchpoint *watchpoint, unsigned int number)
Definition: breakpoints.h:83
static void breakpoint_hw_set(struct breakpoint *breakpoint, unsigned int hw_number)
Definition: breakpoints.h:66
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:375
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:400
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:251
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
Definition: cortex_a.c:397
static int cortex_a_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2748
static int cortex_a_mmu(struct target *target, int *enabled)
Definition: cortex_a.c:3240
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
Definition: cortex_a.c:369
static int cortex_a_exec_opcode(struct target *target, uint32_t opcode, uint32_t *dscr_p)
Definition: cortex_a.c:283
static const struct command_registration cortex_a_command_handlers[]
Definition: cortex_a.c:3397
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
Definition: cortex_a.c:333
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar, uint32_t dfsr, uint32_t *dscr)
Definition: cortex_a.c:2133
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
Definition: cortex_a.c:633
static int cortex_a_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2853
static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
Definition: cortex_a.c:968
static int cortex_a_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2819
static int cortex_a_init_debug_access(struct target *target)
Definition: cortex_a.c:208
static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove a watchpoint from an Cortex-A target.
Definition: cortex_a.c:1906
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
Definition: cortex_a.c:483
static const struct command_registration cortex_r4_exec_command_handlers[]
Definition: cortex_a.c:3462
static const struct command_registration cortex_a_exec_command_handlers[]
Definition: cortex_a.c:3358
static int cortex_a_read_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2434
static int cortex_a_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2768
static int cortex_a_read_copro(struct target *target, uint32_t opcode, uint32_t *data, uint32_t *dscr)
Definition: cortex_a.c:2046
static int cortex_a_instr_read_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Definition: cortex_a.c:551
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:494
static int cortex_a_restore_context(struct target *target, bool bpwp)
Definition: cortex_a.c:1303
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1702
static int cortex_a_step(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Definition: cortex_a.c:1195
static int cortex_a_handle_target_request(void *priv)
Definition: cortex_a.c:2887
static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add a watchpoint to an Cortex-A target.
Definition: cortex_a.c:1881
static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
Sets a watchpoint for an Cortex-A target in one of the watchpoint units.
Definition: cortex_a.c:1734
static int cortex_a_init_arch_info(struct target *target, struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
Definition: cortex_a.c:3139
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:441
static int cortex_a_post_debug_entry(struct target *target)
Definition: cortex_a.c:1102
struct target_type cortexr4_target
Definition: cortex_a.c:3494
static int update_halt_gdb(struct target *target)
Definition: cortex_a.c:689
static int cortex_a_read_cpu_memory_fast(struct target *target, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2511
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1458
static int cortex_r4_target_create(struct target *target)
Definition: cortex_a.c:3190
static int cortex_a_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1685
static int cortex_a_examine(struct target *target)
Definition: cortex_a.c:3113
static int cortex_a_write_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2176
static int cortex_a_halt_smp(struct target *target)
Definition: cortex_a.c:675
static int cortex_a_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1669
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1539
static int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
Definition: cortex_a.c:1149
static int cortex_a_deassert_reset(struct target *target)
Definition: cortex_a.c:1962
static int cortex_a_target_create(struct target *target)
Definition: cortex_a.c:3168
static int cortex_a_write_copro(struct target *target, uint32_t opcode, uint32_t data, uint32_t *dscr)
Definition: cortex_a.c:2100
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar, uint32_t *dfsr, uint32_t *dscr)
Definition: cortex_a.c:2080
static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
Unset an existing watchpoint and clear the used watchpoint unit.
Definition: cortex_a.c:1836
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
Definition: cortex_a.c:1995
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t, uint32_t addr, uint32_t control)
Definition: cortex_a.c:574
static int cortex_a_mmu_modify(struct target *target, int enable)
Definition: cortex_a.c:168
static int cortex_a_internal_restore(struct target *target, bool current, target_addr_t *address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:820
static int cortex_a_virt2phys(struct target *target, target_addr_t virt, target_addr_t *phys)
Definition: cortex_a.c:3257
static int cortex_a_examine_first(struct target *target)
Definition: cortex_a.c:2928
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:532
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
Definition: cortex_a.c:255
static int cortex_a_init_target(struct command_context *cmd_ctx, struct target *target)
Definition: cortex_a.c:3131
static int cortex_a_poll(struct target *target)
Definition: cortex_a.c:735
static void cortex_a_deinit_target(struct target *target)
Definition: cortex_a.c:3210
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
Definition: cortex_a.c:609
static int cortex_a_restore_cp15_control_reg(struct target *target)
Definition: cortex_a.c:90
static const struct command_registration cortex_r4_command_handlers[]
Definition: cortex_a.c:3480
static int cortex_a_post_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:142
static int cortex_a_write_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2281
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
Definition: cortex_a.c:3283
static int cortex_a_set_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1320
static int cortex_a_halt(struct target *target)
Definition: cortex_a.c:792
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:403
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data, uint32_t *dscr_p)
Definition: cortex_a.c:340
static int cortex_a_write_cpu_memory_fast(struct target *target, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2252
static int cortex_a_set_context_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1409
static int cortex_a_prep_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:112
static int cortex_a_read_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2598
static int cortex_a_internal_restart(struct target *target)
Definition: cortex_a.c:918
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
Definition: cortex_a.c:2149
static int cortex_a_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1653
static int cortex_a_instr_write_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Definition: cortex_a.c:461
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t data)
Definition: cortex_a.c:420
static int cortex_a_debug_entry(struct target *target)
Definition: cortex_a.c:1023
static int cortex_a_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2804
static int cortex_a_resume(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:987
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t *data)
Definition: cortex_a.c:512
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask, uint32_t value, uint32_t *dscr)
Definition: cortex_a.c:2017
static struct cortex_a_common * dpm_to_a(struct arm_dpm *dpm)
Definition: cortex_a.c:328
static int cortex_a_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2784
static int cortex_a_assert_reset(struct target *target)
Definition: cortex_a.c:1922
struct target_type cortexa_target
Definition: cortex_a.c:3414
static struct target * get_cortex_a(struct target *target, int32_t coreid)
Definition: cortex_a.c:662
static unsigned int ilog2(unsigned int x)
Definition: cortex_a.c:78
static struct cortex_a_common * target_to_cortex_a(struct target *target)
Definition: cortex_a.h:104
@ CORTEX_A_ISRMASK_OFF
Definition: cortex_a.h:45
@ CORTEX_A_ISRMASK_ON
Definition: cortex_a.h:46
@ CORTEX_A_DACRFIXUP_ON
Definition: cortex_a.h:51
@ CORTEX_A_DACRFIXUP_OFF
Definition: cortex_a.h:50
#define CORTEX_A_COMMON_MAGIC
Definition: cortex_a.h:22
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
int mask
Definition: esirisc.c:1740
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
bool transport_is_jtag(void)
Returns true if the current debug session is using JTAG as its transport.
Definition: jtag/core.c:1840
int adapter_deassert_reset(void)
Definition: jtag/core.c:1912
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1747
int adapter_assert_reset(void)
Definition: jtag/core.c:1892
@ RESET_SRST_NO_GATING
Definition: jtag.h:224
@ RESET_HAS_SRST
Definition: jtag.h:218
#define LOG_TARGET_WARNING(target, fmt_str,...)
Definition: log.h:159
#define LOG_WARNING(expr ...)
Definition: log.h:130
#define ERROR_FAIL
Definition: log.h:174
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:162
#define LOG_TARGET_DEBUG(target, fmt_str,...)
Definition: log.h:150
#define LOG_ERROR(expr ...)
Definition: log.h:133
#define LOG_INFO(expr ...)
Definition: log.h:127
#define LOG_DEBUG(expr ...)
Definition: log.h:110
#define ERROR_OK
Definition: log.h:168
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
void register_cache_invalidate(struct reg_cache *cache)
Marks the contents of the register cache as invalid (and clean).
Definition: register.c:94
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
const struct command_registration smp_command_handlers[]
Definition: smp.c:153
#define foreach_smp_target(pos, head)
Definition: smp.h:15
#define BIT(nr)
Definition: stm32l4x.h:18
uint64_t ap_num
ADIv5: Number of this AP (0~255) ADIv6: Base address of this AP (4k aligned) TODO: to be more coheren...
Definition: arm_adi_v5.h:261
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:254
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:306
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:348
uint64_t apsel
Definition: arm_adi_v5.h:367
struct adiv5_dap * dap
Definition: arm_adi_v5.h:787
This wraps an implementation of DPM primitives.
Definition: arm_dpm.h:47
int(* instr_read_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from dcc after execution.
Definition: arm_dpm.h:91
uint64_t didr
Cache of DIDR.
Definition: arm_dpm.h:51
int(* instr_write_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to R0 before execution.
Definition: arm_dpm.h:72
struct arm * arm
Definition: arm_dpm.h:48
int(* bpwp_enable)(struct arm_dpm *dpm, unsigned int index_value, uint32_t addr, uint32_t control)
Enables one breakpoint or watchpoint by writing to the hardware registers.
Definition: arm_dpm.h:122
int(* finish)(struct arm_dpm *dpm)
Invoke after a series of instruction operations.
Definition: arm_dpm.h:57
struct dpm_bp * dbp
Definition: arm_dpm.h:139
int(* instr_write_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to DCC before execution.
Definition: arm_dpm.h:65
int(* prepare)(struct arm_dpm *dpm)
Invoke before a series of instruction operations.
Definition: arm_dpm.h:54
int(* instr_read_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from r0 after execution.
Definition: arm_dpm.h:98
int(* instr_read_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Runs two instructions, reading data from r0 and r1 after execution.
Definition: arm_dpm.h:105
struct dpm_wp * dwp
Definition: arm_dpm.h:140
int(* bpwp_disable)(struct arm_dpm *dpm, unsigned int index_value)
Disables one breakpoint or watchpoint by clearing its hardware control registers.
Definition: arm_dpm.h:130
int(* instr_cpsr_sync)(struct arm_dpm *dpm)
Optional core-specific operation invoked after CPSR writes.
Definition: arm_dpm.h:86
int(* instr_write_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Runs two instructions, writing data to R0 and R1 before execution.
Definition: arm_dpm.h:78
uint32_t dscr
Recent value of DSCR.
Definition: arm_dpm.h:150
Represents a generic ARM core, with standard application registers.
Definition: arm.h:175
enum arm_core_type core_type
Indicates what registers are in the ARM state core register set.
Definition: arm.h:193
int(* mrc)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value)
Read coprocessor register.
Definition: arm.h:230
enum arm_mode core_mode
Record the current core mode: SVC, USR, or some other mode.
Definition: arm.h:196
struct adiv5_dap * dap
For targets conforming to ARM Debug Interface v5, this handle references the Debug Access Port (DAP) ...
Definition: arm.h:257
struct reg * pc
Handle to the PC; valid in all core modes.
Definition: arm.h:181
struct reg_cache * core_cache
Definition: arm.h:178
int(* mcr)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value)
Write coprocessor register.
Definition: arm.h:241
struct reg * spsr
Handle to the SPSR; valid only in core modes with an SPSR.
Definition: arm.h:187
int arm_vfp_version
Floating point or VFP version, 0 if disabled.
Definition: arm.h:205
struct target * target
Backpointer to the target.
Definition: arm.h:210
enum arm_state core_state
Record the current core state: ARM, Thumb, or otherwise.
Definition: arm.h:199
int d_u_cache_enabled
Definition: armv7a.h:67
bool is_armv7r
Definition: armv7a.h:103
int(* post_debug_entry)(struct target *target)
Definition: armv7a.h:114
int(* examine_debug_reason)(struct target *target)
Definition: armv7a.h:113
target_addr_t debug_base
Definition: armv7a.h:95
struct arm arm
Definition: armv7a.h:90
struct armv7a_mmu_common armv7a_mmu
Definition: armv7a.h:111
struct arm_dpm dpm
Definition: armv7a.h:94
struct adiv5_ap * debug_ap
Definition: armv7a.h:96
void(* pre_restore_context)(struct target *target)
Definition: armv7a.h:116
struct armv7a_cache_common armv7a_cache
Definition: armv7a.h:83
int(* read_physical_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: armv7a.h:81
uint32_t mmu_enabled
Definition: armv7a.h:84
int linked_brp
Definition: breakpoints.h:36
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
bool is_set
Definition: breakpoints.h:31
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
const char * name
Definition: command.h:234
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:247
uint32_t value
Definition: cortex_a.h:57
uint32_t control
Definition: cortex_a.h:58
bool used
Definition: cortex_a.h:55
uint8_t brpn
Definition: cortex_a.h:59
struct armv7a_common armv7a_common
Definition: cortex_a.h:72
struct cortex_a_wrp * wrp_list
Definition: cortex_a.h:94
uint32_t didr
Definition: cortex_a.h:97
int brp_num_context
Definition: cortex_a.h:88
struct cortex_a_brp * brp_list
Definition: cortex_a.h:91
uint32_t cp15_control_reg_curr
Definition: cortex_a.h:80
enum cortex_a_dacrfixup_mode dacrfixup_mode
Definition: cortex_a.h:100
int wrp_num_available
Definition: cortex_a.h:93
uint32_t cpudbg_dscr
Definition: cortex_a.h:75
uint32_t cp15_dacr_reg
Definition: cortex_a.h:84
unsigned int common_magic
Definition: cortex_a.h:70
enum cortex_a_isrmasking_mode isrmasking_mode
Definition: cortex_a.h:99
uint32_t cpuid
Definition: cortex_a.h:96
enum arm_mode curr_mode
Definition: cortex_a.h:85
uint32_t cp15_control_reg
Definition: cortex_a.h:78
int brp_num_available
Definition: cortex_a.h:90
uint8_t wrpn
Definition: cortex_a.h:66
bool used
Definition: cortex_a.h:63
uint32_t value
Definition: cortex_a.h:64
uint32_t control
Definition: cortex_a.h:65
int32_t core[2]
Definition: target.h:100
struct target * target
Definition: target.h:95
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
Definition: register.h:111
bool valid
Definition: register.h:126
uint8_t * value
Definition: register.h:122
bool dirty
Definition: register.h:124
struct target * target
Definition: target.h:214
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
const char * name
Name of this type of target.
Definition: target_type.h:31
Definition: target.h:116
int32_t coreid
Definition: target.h:120
struct gdb_service * gdb_service
Definition: target.h:199
bool dbgbase_set
Definition: target.h:174
bool dbg_msg_enabled
Definition: target.h:163
enum target_debug_reason debug_reason
Definition: target.h:154
enum target_state state
Definition: target.h:157
uint32_t dbgbase
Definition: target.h:175
void * private_config
Definition: target.h:165
struct list_head * smp_targets
Definition: target.h:188
unsigned int smp
Definition: target.h:187
bool reset_halt
Definition: target.h:144
bool is_set
Definition: breakpoints.h:47
unsigned int length
Definition: breakpoints.h:43
unsigned int number
Definition: breakpoints.h:48
target_addr_t address
Definition: breakpoints.h:42
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1773
void target_free_all_working_areas(struct target *target)
Definition: target.c:2159
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:378
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:360
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1274
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1667
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:342
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1246
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4831
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:466
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4667
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:324
@ DBG_REASON_NOTHALTED
Definition: target.h:74
@ DBG_REASON_DBGRQ
Definition: target.h:69
@ DBG_REASON_SINGLESTEP
Definition: target.h:73
@ DBG_REASON_WATCHPOINT
Definition: target.h:71
@ DBG_REASON_BREAKPOINT
Definition: target.h:70
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:783
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:781
static bool target_was_examined(const struct target *target)
Definition: target.h:429
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:785
#define ERROR_TARGET_INVALID
Definition: target.h:780
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:320
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:272
@ TARGET_EVENT_HALTED
Definition: target.h:252
@ TARGET_EVENT_RESUMED
Definition: target.h:253
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:271
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:264
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:233
target_state
Definition: target.h:53
@ TARGET_RESET
Definition: target.h:57
@ TARGET_DEBUG_RUNNING
Definition: target.h:58
@ TARGET_UNKNOWN
Definition: target.h:54
@ TARGET_HALTED
Definition: target.h:56
@ TARGET_RUNNING
Definition: target.h:55
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:787
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:436
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:786
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:788
int target_request(struct target *target, uint32_t request)
int64_t timeval_ms(void)
#define TARGET_ADDR_FMT
Definition: types.h:342
uint64_t target_addr_t
Definition: types.h:335
#define container_of(ptr, type, member)
Cast a member of a structure out to the containing structure.
Definition: types.h:68
#define NULL
Definition: usb.h:16
uint8_t status[4]
Definition: vdebug.c:17
uint8_t dummy[96]
Definition: vdebug.c:23
uint8_t count[4]
Definition: vdebug.c:22