OpenOCD
cortex_a.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2005 by Dominic Rath *
5  * Dominic.Rath@gmx.de *
6  * *
7  * Copyright (C) 2006 by Magnus Lundin *
8  * lundin@mlu.mine.nu *
9  * *
10  * Copyright (C) 2008 by Spencer Oliver *
11  * spen@spen-soft.co.uk *
12  * *
13  * Copyright (C) 2009 by Dirk Behme *
14  * dirk.behme@gmail.com - copy from cortex_m3 *
15  * *
16  * Copyright (C) 2010 Øyvind Harboe *
17  * oyvind.harboe@zylin.com *
18  * *
19  * Copyright (C) ST-Ericsson SA 2011 *
20  * michel.jaouen@stericsson.com : smp minimum support *
21  * *
22  * Copyright (C) Broadcom 2012 *
23  * ehunter@broadcom.com : Cortex-R4 support *
24  * *
25  * Copyright (C) 2013 Kamal Dasu *
26  * kdasu.kdev@gmail.com *
27  * *
28  * Copyright (C) 2016 Chengyu Zheng *
29  * chengyu.zheng@polimi.it : watchpoint support *
30  * *
31  * Cortex-A8(tm) TRM, ARM DDI 0344H *
32  * Cortex-A9(tm) TRM, ARM DDI 0407F *
33  * Cortex-A4(tm) TRM, ARM DDI 0363E *
34  * Cortex-A15(tm)TRM, ARM DDI 0438C *
35  * *
36  ***************************************************************************/
37 
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41 
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/nvp.h>
56 #include <helper/time_support.h>
57 
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62  struct breakpoint *breakpoint, uint8_t matchmode);
64  struct breakpoint *breakpoint, uint8_t matchmode);
66  struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68  struct breakpoint *breakpoint);
69 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
70  uint32_t value, uint32_t *dscr);
71 static int cortex_a_mmu(struct target *target, int *enabled);
72 static int cortex_a_mmu_modify(struct target *target, int enable);
73 static int cortex_a_virt2phys(struct target *target,
74  target_addr_t virt, target_addr_t *phys);
75 static int cortex_a_read_cpu_memory(struct target *target,
76  uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
77 
78 static unsigned int ilog2(unsigned int x)
79 {
80  unsigned int y = 0;
81  x /= 2;
82  while (x) {
83  ++y;
84  x /= 2;
85  }
86  return y;
87 }
88 
89 /* restore cp15_control_reg at resume */
91 {
92  int retval = ERROR_OK;
93  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
94  struct armv7a_common *armv7a = target_to_armv7a(target);
95 
96  if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
97  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
98  /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
99  retval = armv7a->arm.mcr(target, 15,
100  0, 0, /* op1, op2 */
101  1, 0, /* CRn, CRm */
102  cortex_a->cp15_control_reg);
103  }
104  return retval;
105 }
106 
107 /*
108  * Set up ARM core for memory access.
109  * If !phys_access, switch to SVC mode and make sure MMU is on
110  * If phys_access, switch off mmu
111  */
112 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
113 {
114  struct armv7a_common *armv7a = target_to_armv7a(target);
115  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
116  int mmu_enabled = 0;
117 
118  if (phys_access == 0) {
120  cortex_a_mmu(target, &mmu_enabled);
121  if (mmu_enabled)
123  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
124  /* overwrite DACR to all-manager */
125  armv7a->arm.mcr(target, 15,
126  0, 0, 3, 0,
127  0xFFFFFFFF);
128  }
129  } else {
130  cortex_a_mmu(target, &mmu_enabled);
131  if (mmu_enabled)
133  }
134  return ERROR_OK;
135 }
136 
137 /*
138  * Restore ARM core after memory access.
139  * If !phys_access, switch to previous mode
140  * If phys_access, restore MMU setting
141  */
142 static int cortex_a_post_memaccess(struct target *target, int phys_access)
143 {
144  struct armv7a_common *armv7a = target_to_armv7a(target);
145  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
146 
147  if (phys_access == 0) {
148  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
149  /* restore */
150  armv7a->arm.mcr(target, 15,
151  0, 0, 3, 0,
152  cortex_a->cp15_dacr_reg);
153  }
155  } else {
156  int mmu_enabled = 0;
157  cortex_a_mmu(target, &mmu_enabled);
158  if (mmu_enabled)
160  }
161  return ERROR_OK;
162 }
163 
164 
165 /* modify cp15_control_reg in order to enable or disable mmu for :
166  * - virt2phys address conversion
167  * - read or write memory in phys or virt address */
168 static int cortex_a_mmu_modify(struct target *target, int enable)
169 {
170  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
171  struct armv7a_common *armv7a = target_to_armv7a(target);
172  int retval = ERROR_OK;
173  int need_write = 0;
174 
175  if (enable) {
176  /* if mmu enabled at target stop and mmu not enable */
177  if (!(cortex_a->cp15_control_reg & 0x1U)) {
178  LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
179  return ERROR_FAIL;
180  }
181  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
182  cortex_a->cp15_control_reg_curr |= 0x1U;
183  need_write = 1;
184  }
185  } else {
186  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
187  cortex_a->cp15_control_reg_curr &= ~0x1U;
188  need_write = 1;
189  }
190  }
191 
192  if (need_write) {
193  LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
194  enable ? "enable mmu" : "disable mmu",
195  cortex_a->cp15_control_reg_curr);
196 
197  retval = armv7a->arm.mcr(target, 15,
198  0, 0, /* op1, op2 */
199  1, 0, /* CRn, CRm */
200  cortex_a->cp15_control_reg_curr);
201  }
202  return retval;
203 }
204 
205 /*
206  * Cortex-A Basic debug access, very low level assumes state is saved
207  */
209 {
210  struct armv7a_common *armv7a = target_to_armv7a(target);
211  uint32_t dscr;
212  int retval;
213 
214  /* lock memory-mapped access to debug registers to prevent
215  * software interference */
216  retval = mem_ap_write_u32(armv7a->debug_ap,
217  armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
218  if (retval != ERROR_OK)
219  return retval;
220 
221  /* Disable cacheline fills and force cache write-through in debug state */
222  retval = mem_ap_write_u32(armv7a->debug_ap,
223  armv7a->debug_base + CPUDBG_DSCCR, 0);
224  if (retval != ERROR_OK)
225  return retval;
226 
227  /* Disable TLB lookup and refill/eviction in debug state */
228  retval = mem_ap_write_u32(armv7a->debug_ap,
229  armv7a->debug_base + CPUDBG_DSMCR, 0);
230  if (retval != ERROR_OK)
231  return retval;
232 
233  retval = dap_run(armv7a->debug_ap->dap);
234  if (retval != ERROR_OK)
235  return retval;
236 
237  /* Enabling of instruction execution in debug mode is done in debug_entry code */
238 
239  /* Resync breakpoint registers */
240 
241  /* Enable halt for breakpoint, watchpoint and vector catch */
242  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243  armv7a->debug_base + CPUDBG_DSCR, &dscr);
244  if (retval != ERROR_OK)
245  return retval;
246  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
247  armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
248  if (retval != ERROR_OK)
249  return retval;
250 
251  /* Since this is likely called from init or reset, update target state information*/
252  return cortex_a_poll(target);
253 }
254 
255 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
256 {
257  /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
258  * Writes final value of DSCR into *dscr. Pass force to force always
259  * reading DSCR at least once. */
260  struct armv7a_common *armv7a = target_to_armv7a(target);
261  int retval;
262 
263  if (force) {
264  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
265  armv7a->debug_base + CPUDBG_DSCR, dscr);
266  if (retval != ERROR_OK) {
267  LOG_ERROR("Could not read DSCR register");
268  return retval;
269  }
270  }
271 
273  if (retval != ERROR_OK)
274  LOG_ERROR("Error waiting for InstrCompl=1");
275  return retval;
276 }
277 
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value. Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284  uint32_t opcode, uint32_t *dscr_p)
285 {
286  uint32_t dscr;
287  int retval;
288  struct armv7a_common *armv7a = target_to_armv7a(target);
289 
290  dscr = dscr_p ? *dscr_p : 0;
291 
292  LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
293 
294  /* Wait for InstrCompl bit to be set */
295  retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
296  if (retval != ERROR_OK)
297  return retval;
298 
299  retval = mem_ap_write_u32(armv7a->debug_ap,
300  armv7a->debug_base + CPUDBG_ITR, opcode);
301  if (retval != ERROR_OK)
302  return retval;
303 
304  /* Wait for InstrCompl bit to be set */
305  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
306  if (retval != ERROR_OK) {
307  LOG_ERROR("Error waiting for cortex_a_exec_opcode");
308  return retval;
309  }
310 
311  if (dscr_p)
312  *dscr_p = dscr;
313 
314  return retval;
315 }
316 
317 /*
318  * Cortex-A implementation of Debug Programmer's Model
319  *
320  * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
321  * so there's no need to poll for it before executing an instruction.
322  *
323  * NOTE that in several of these cases the "stall" mode might be useful.
324  * It'd let us queue a few operations together... prepare/finish might
325  * be the places to enable/disable that mode.
326  */
327 
328 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
329 {
330  return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
331 }
332 
333 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
334 {
335  LOG_DEBUG("write DCC 0x%08" PRIx32, data);
338 }
339 
340 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
341  uint32_t *dscr_p)
342 {
343  uint32_t dscr = DSCR_INSTR_COMP;
344  int retval;
345 
346  if (dscr_p)
347  dscr = *dscr_p;
348 
349  /* Wait for DTRRXfull */
352  if (retval != ERROR_OK) {
353  LOG_ERROR("Error waiting for read dcc");
354  return retval;
355  }
356 
359  if (retval != ERROR_OK)
360  return retval;
361  /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
362 
363  if (dscr_p)
364  *dscr_p = dscr;
365 
366  return retval;
367 }
368 
369 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
370 {
371  struct cortex_a_common *a = dpm_to_a(dpm);
372  uint32_t dscr;
373  int retval;
374 
375  /* set up invariant: INSTR_COMP is set after ever DPM operation */
376  retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
377  if (retval != ERROR_OK) {
378  LOG_ERROR("Error waiting for dpm prepare");
379  return retval;
380  }
381 
382  /* this "should never happen" ... */
383  if (dscr & DSCR_DTR_RX_FULL) {
384  LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
385  /* Clear DCCRX */
386  retval = cortex_a_exec_opcode(
388  ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
389  &dscr);
390  if (retval != ERROR_OK)
391  return retval;
392  }
393 
394  return retval;
395 }
396 
397 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
398 {
399  /* REVISIT what could be done here? */
400  return ERROR_OK;
401 }
402 
403 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
404  uint32_t opcode, uint32_t data)
405 {
406  struct cortex_a_common *a = dpm_to_a(dpm);
407  int retval;
408  uint32_t dscr = DSCR_INSTR_COMP;
409 
410  retval = cortex_a_write_dcc(a, data);
411  if (retval != ERROR_OK)
412  return retval;
413 
414  return cortex_a_exec_opcode(
416  opcode,
417  &dscr);
418 }
419 
421  uint8_t rt, uint32_t data)
422 {
423  struct cortex_a_common *a = dpm_to_a(dpm);
424  uint32_t dscr = DSCR_INSTR_COMP;
425  int retval;
426 
427  if (rt > 15)
428  return ERROR_TARGET_INVALID;
429 
430  retval = cortex_a_write_dcc(a, data);
431  if (retval != ERROR_OK)
432  return retval;
433 
434  /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
435  return cortex_a_exec_opcode(
437  ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
438  &dscr);
439 }
440 
441 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
442  uint32_t opcode, uint32_t data)
443 {
444  struct cortex_a_common *a = dpm_to_a(dpm);
445  uint32_t dscr = DSCR_INSTR_COMP;
446  int retval;
447 
448  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
449  if (retval != ERROR_OK)
450  return retval;
451 
452  /* then the opcode, taking data from R0 */
453  retval = cortex_a_exec_opcode(
455  opcode,
456  &dscr);
457 
458  return retval;
459 }
460 
462  uint32_t opcode, uint64_t data)
463 {
464  struct cortex_a_common *a = dpm_to_a(dpm);
465  uint32_t dscr = DSCR_INSTR_COMP;
466  int retval;
467 
468  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data & 0xffffffffULL);
469  if (retval != ERROR_OK)
470  return retval;
471 
472  retval = cortex_a_instr_write_data_rt_dcc(dpm, 1, data >> 32);
473  if (retval != ERROR_OK)
474  return retval;
475 
476  /* then the opcode, taking data from R0, R1 */
478  opcode,
479  &dscr);
480  return retval;
481 }
482 
483 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
484 {
485  struct target *target = dpm->arm->target;
486  uint32_t dscr = DSCR_INSTR_COMP;
487 
488  /* "Prefetch flush" after modifying execution status in CPSR */
490  ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
491  &dscr);
492 }
493 
494 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
495  uint32_t opcode, uint32_t *data)
496 {
497  struct cortex_a_common *a = dpm_to_a(dpm);
498  int retval;
499  uint32_t dscr = DSCR_INSTR_COMP;
500 
501  /* the opcode, writing data to DCC */
502  retval = cortex_a_exec_opcode(
504  opcode,
505  &dscr);
506  if (retval != ERROR_OK)
507  return retval;
508 
509  return cortex_a_read_dcc(a, data, &dscr);
510 }
511 
513  uint8_t rt, uint32_t *data)
514 {
515  struct cortex_a_common *a = dpm_to_a(dpm);
516  uint32_t dscr = DSCR_INSTR_COMP;
517  int retval;
518 
519  if (rt > 15)
520  return ERROR_TARGET_INVALID;
521 
522  retval = cortex_a_exec_opcode(
524  ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
525  &dscr);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  return cortex_a_read_dcc(a, data, &dscr);
530 }
531 
532 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
533  uint32_t opcode, uint32_t *data)
534 {
535  struct cortex_a_common *a = dpm_to_a(dpm);
536  uint32_t dscr = DSCR_INSTR_COMP;
537  int retval;
538 
539  /* the opcode, writing data to R0 */
540  retval = cortex_a_exec_opcode(
542  opcode,
543  &dscr);
544  if (retval != ERROR_OK)
545  return retval;
546 
547  /* write R0 to DCC */
548  return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
549 }
550 
552  uint32_t opcode, uint64_t *data)
553 {
554  uint32_t lo, hi;
555  int retval;
556 
557  /* the opcode, writing data to RO, R1 */
558  retval = cortex_a_instr_read_data_r0(dpm, opcode, &lo);
559  if (retval != ERROR_OK)
560  return retval;
561 
562  *data = lo;
563 
564  /* write R1 to DCC */
565  retval = cortex_a_instr_read_data_rt_dcc(dpm, 1, &hi);
566  if (retval != ERROR_OK)
567  return retval;
568 
569  *data |= (uint64_t)hi << 32;
570 
571  return retval;
572 }
573 
574 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t,
575  uint32_t addr, uint32_t control)
576 {
577  struct cortex_a_common *a = dpm_to_a(dpm);
578  uint32_t vr = a->armv7a_common.debug_base;
579  uint32_t cr = a->armv7a_common.debug_base;
580  int retval;
581 
582  switch (index_t) {
583  case 0 ... 15: /* breakpoints */
584  vr += CPUDBG_BVR_BASE;
585  cr += CPUDBG_BCR_BASE;
586  break;
587  case 16 ... 31: /* watchpoints */
588  vr += CPUDBG_WVR_BASE;
589  cr += CPUDBG_WCR_BASE;
590  index_t -= 16;
591  break;
592  default:
593  return ERROR_FAIL;
594  }
595  vr += 4 * index_t;
596  cr += 4 * index_t;
597 
598  LOG_DEBUG("A: bpwp enable, vr %08" PRIx32 " cr %08" PRIx32, vr, cr);
599 
601  vr, addr);
602  if (retval != ERROR_OK)
603  return retval;
605  cr, control);
606  return retval;
607 }
608 
609 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
610 {
611  struct cortex_a_common *a = dpm_to_a(dpm);
612  uint32_t cr;
613 
614  switch (index_t) {
615  case 0 ... 15:
617  break;
618  case 16 ... 31:
620  index_t -= 16;
621  break;
622  default:
623  return ERROR_FAIL;
624  }
625  cr += 4 * index_t;
626 
627  LOG_DEBUG("A: bpwp disable, cr %08" PRIx32, cr);
628 
629  /* clear control register */
631 }
632 
633 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
634 {
635  struct arm_dpm *dpm = &a->armv7a_common.dpm;
636  int retval;
637 
638  dpm->arm = &a->armv7a_common.arm;
639  dpm->didr = didr;
640 
643 
648 
652 
655 
656  retval = arm_dpm_setup(dpm);
657  if (retval == ERROR_OK)
658  retval = arm_dpm_initialize(dpm);
659 
660  return retval;
661 }
662 static struct target *get_cortex_a(struct target *target, int32_t coreid)
663 {
664  struct target_list *head;
665 
667  struct target *curr = head->target;
668  if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
669  return curr;
670  }
671  return target;
672 }
673 static int cortex_a_halt(struct target *target);
674 
675 static int cortex_a_halt_smp(struct target *target)
676 {
677  int retval = 0;
678  struct target_list *head;
679 
681  struct target *curr = head->target;
682  if ((curr != target) && (curr->state != TARGET_HALTED)
683  && target_was_examined(curr))
684  retval += cortex_a_halt(curr);
685  }
686  return retval;
687 }
688 
689 static int update_halt_gdb(struct target *target)
690 {
691  struct target *gdb_target = NULL;
692  struct target_list *head;
693  struct target *curr;
694  int retval = 0;
695 
696  if (target->gdb_service && target->gdb_service->core[0] == -1) {
699  retval += cortex_a_halt_smp(target);
700  }
701 
702  if (target->gdb_service)
703  gdb_target = target->gdb_service->target;
704 
706  curr = head->target;
707  /* skip calling context */
708  if (curr == target)
709  continue;
710  if (!target_was_examined(curr))
711  continue;
712  /* skip targets that were already halted */
713  if (curr->state == TARGET_HALTED)
714  continue;
715  /* Skip gdb_target; it alerts GDB so has to be polled as last one */
716  if (curr == gdb_target)
717  continue;
718 
719  /* avoid recursion in cortex_a_poll() */
720  curr->smp = 0;
721  cortex_a_poll(curr);
722  curr->smp = 1;
723  }
724 
725  /* after all targets were updated, poll the gdb serving target */
726  if (gdb_target && gdb_target != target)
727  cortex_a_poll(gdb_target);
728  return retval;
729 }
730 
731 /*
732  * Cortex-A Run control
733  */
734 
735 static int cortex_a_poll(struct target *target)
736 {
737  int retval = ERROR_OK;
738  uint32_t dscr;
739  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
740  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
741  enum target_state prev_target_state = target->state;
742  /* toggle to another core is done by gdb as follow */
743  /* maint packet J core_id */
744  /* continue */
745  /* the next polling trigger an halt event sent to gdb */
746  if ((target->state == TARGET_HALTED) && (target->smp) &&
747  (target->gdb_service) &&
748  (!target->gdb_service->target)) {
752  return retval;
753  }
754  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
755  armv7a->debug_base + CPUDBG_DSCR, &dscr);
756  if (retval != ERROR_OK)
757  return retval;
758  cortex_a->cpudbg_dscr = dscr;
759 
761  if (prev_target_state != TARGET_HALTED) {
762  /* We have a halting debug event */
763  LOG_DEBUG("Target halted");
765 
766  retval = cortex_a_debug_entry(target);
767  if (retval != ERROR_OK)
768  return retval;
769 
770  if (target->smp) {
771  retval = update_halt_gdb(target);
772  if (retval != ERROR_OK)
773  return retval;
774  }
775 
776  if (prev_target_state == TARGET_DEBUG_RUNNING) {
778  } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
779  if (arm_semihosting(target, &retval) != 0)
780  return retval;
781 
784  }
785  }
786  } else
788 
789  return retval;
790 }
791 
792 static int cortex_a_halt(struct target *target)
793 {
794  int retval;
795  uint32_t dscr;
796  struct armv7a_common *armv7a = target_to_armv7a(target);
797 
798  /*
799  * Tell the core to be halted by writing DRCR with 0x1
800  * and then wait for the core to be halted.
801  */
802  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
803  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
804  if (retval != ERROR_OK)
805  return retval;
806 
807  dscr = 0; /* force read of dscr */
809  DSCR_CORE_HALTED, &dscr);
810  if (retval != ERROR_OK) {
811  LOG_ERROR("Error waiting for halt");
812  return retval;
813  }
814 
816 
817  return ERROR_OK;
818 }
819 
820 static int cortex_a_internal_restore(struct target *target, int current,
821  target_addr_t *address, int handle_breakpoints, int debug_execution)
822 {
823  struct armv7a_common *armv7a = target_to_armv7a(target);
824  struct arm *arm = &armv7a->arm;
825  int retval;
826  uint32_t resume_pc;
827 
828  if (!debug_execution)
830 
831 #if 0
832  if (debug_execution) {
833  /* Disable interrupts */
834  /* We disable interrupts in the PRIMASK register instead of
835  * masking with C_MASKINTS,
836  * This is probably the same issue as Cortex-M3 Errata 377493:
837  * C_MASKINTS in parallel with disabled interrupts can cause
838  * local faults to not be taken. */
839  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
840  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
841  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
842 
843  /* Make sure we are in Thumb mode */
844  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
845  buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
846  32) | (1 << 24));
847  armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
848  armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
849  }
850 #endif
851 
852  /* current = 1: continue on current pc, otherwise continue at <address> */
853  resume_pc = buf_get_u32(arm->pc->value, 0, 32);
854  if (!current)
855  resume_pc = *address;
856  else
857  *address = resume_pc;
858 
859  /* Make sure that the Armv7 gdb thumb fixups does not
860  * kill the return address
861  */
862  switch (arm->core_state) {
863  case ARM_STATE_ARM:
864  resume_pc &= 0xFFFFFFFC;
865  break;
866  case ARM_STATE_THUMB:
867  case ARM_STATE_THUMB_EE:
868  /* When the return address is loaded into PC
869  * bit 0 must be 1 to stay in Thumb state
870  */
871  resume_pc |= 0x1;
872  break;
873  case ARM_STATE_JAZELLE:
874  LOG_ERROR("How do I resume into Jazelle state??");
875  return ERROR_FAIL;
876  case ARM_STATE_AARCH64:
877  LOG_ERROR("Shouldn't be in AARCH64 state");
878  return ERROR_FAIL;
879  }
880  LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
881  buf_set_u32(arm->pc->value, 0, 32, resume_pc);
882  arm->pc->dirty = true;
883  arm->pc->valid = true;
884 
885  /* restore dpm_mode at system halt */
887  /* called it now before restoring context because it uses cpu
888  * register r0 for restoring cp15 control register */
890  if (retval != ERROR_OK)
891  return retval;
892  retval = cortex_a_restore_context(target, handle_breakpoints);
893  if (retval != ERROR_OK)
894  return retval;
897 
898  /* registers are now invalid */
900 
901 #if 0
902  /* the front-end may request us not to handle breakpoints */
903  if (handle_breakpoints) {
904  /* Single step past breakpoint at current address */
905  breakpoint = breakpoint_find(target, resume_pc);
906  if (breakpoint) {
907  LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
908  cortex_m3_unset_breakpoint(target, breakpoint);
909  cortex_m3_single_step_core(target);
910  cortex_m3_set_breakpoint(target, breakpoint);
911  }
912  }
913 
914 #endif
915  return retval;
916 }
917 
919 {
920  struct armv7a_common *armv7a = target_to_armv7a(target);
921  struct arm *arm = &armv7a->arm;
922  int retval;
923  uint32_t dscr;
924  /*
925  * * Restart core and wait for it to be started. Clear ITRen and sticky
926  * * exception flags: see ARMv7 ARM, C5.9.
927  *
928  * REVISIT: for single stepping, we probably want to
929  * disable IRQs by default, with optional override...
930  */
931 
932  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
933  armv7a->debug_base + CPUDBG_DSCR, &dscr);
934  if (retval != ERROR_OK)
935  return retval;
936 
937  if ((dscr & DSCR_INSTR_COMP) == 0)
938  LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
939 
940  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
941  armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
942  if (retval != ERROR_OK)
943  return retval;
944 
945  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
946  armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
948  if (retval != ERROR_OK)
949  return retval;
950 
951  dscr = 0; /* force read of dscr */
953  DSCR_CORE_RESTARTED, &dscr);
954  if (retval != ERROR_OK) {
955  LOG_ERROR("Error waiting for resume");
956  return retval;
957  }
958 
961 
962  /* registers are now invalid */
964 
965  return ERROR_OK;
966 }
967 
968 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
969 {
970  int retval = 0;
971  struct target_list *head;
973 
975  struct target *curr = head->target;
976  if ((curr != target) && (curr->state != TARGET_RUNNING)
977  && target_was_examined(curr)) {
978  /* resume current address , not in step mode */
979  retval += cortex_a_internal_restore(curr, 1, &address,
980  handle_breakpoints, 0);
981  retval += cortex_a_internal_restart(curr);
982  }
983  }
984  return retval;
985 }
986 
987 static int cortex_a_resume(struct target *target, int current,
988  target_addr_t address, int handle_breakpoints, int debug_execution)
989 {
990  int retval = 0;
991  /* dummy resume for smp toggle in order to reduce gdb impact */
992  if ((target->smp) && (target->gdb_service->core[1] != -1)) {
993  /* simulate a start and halt of target */
996  /* fake resume at next poll we play the target core[1], see poll*/
998  return 0;
999  }
1000  cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1001  if (target->smp) {
1002  target->gdb_service->core[0] = -1;
1003  retval = cortex_a_restore_smp(target, handle_breakpoints);
1004  if (retval != ERROR_OK)
1005  return retval;
1006  }
1008 
1009  if (!debug_execution) {
1012  LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1013  } else {
1016  LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1017  }
1018 
1019  return ERROR_OK;
1020 }
1021 
1023 {
1024  uint32_t dscr;
1025  int retval = ERROR_OK;
1026  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1027  struct armv7a_common *armv7a = target_to_armv7a(target);
1028  struct arm *arm = &armv7a->arm;
1029 
1030  LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1031 
1032  /* REVISIT surely we should not re-read DSCR !! */
1033  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1034  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1035  if (retval != ERROR_OK)
1036  return retval;
1037 
1038  /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1039  * imprecise data aborts get discarded by issuing a Data
1040  * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1041  */
1042 
1043  /* Enable the ITR execution once we are in debug mode */
1044  dscr |= DSCR_ITR_EN;
1045  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1046  armv7a->debug_base + CPUDBG_DSCR, dscr);
1047  if (retval != ERROR_OK)
1048  return retval;
1049 
1050  /* Examine debug reason */
1051  arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1052 
1053  /* save address of instruction that triggered the watchpoint? */
1055  uint32_t wfar;
1056 
1057  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1058  armv7a->debug_base + CPUDBG_WFAR,
1059  &wfar);
1060  if (retval != ERROR_OK)
1061  return retval;
1062  arm_dpm_report_wfar(&armv7a->dpm, wfar);
1063  }
1064 
1065  /* First load register accessible through core debug port */
1066  retval = arm_dpm_read_current_registers(&armv7a->dpm);
1067  if (retval != ERROR_OK)
1068  return retval;
1069 
1070  if (arm->spsr) {
1071  /* read SPSR */
1072  retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1073  if (retval != ERROR_OK)
1074  return retval;
1075  }
1076 
1077 #if 0
1078 /* TODO, Move this */
1079  uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1080  cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1081  LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1082 
1083  cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1084  LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1085 
1086  cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1087  LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1088 #endif
1089 
1090  /* Are we in an exception handler */
1091 /* armv4_5->exception_number = 0; */
1092  if (armv7a->post_debug_entry) {
1093  retval = armv7a->post_debug_entry(target);
1094  if (retval != ERROR_OK)
1095  return retval;
1096  }
1097 
1098  return retval;
1099 }
1100 
1102 {
1103  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1104  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1105  int retval;
1106 
1107  /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1108  retval = armv7a->arm.mrc(target, 15,
1109  0, 0, /* op1, op2 */
1110  1, 0, /* CRn, CRm */
1111  &cortex_a->cp15_control_reg);
1112  if (retval != ERROR_OK)
1113  return retval;
1114  LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1115  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1116 
1117  if (!armv7a->is_armv7r)
1119 
1120  if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1122 
1123  if (armv7a->is_armv7r) {
1124  armv7a->armv7a_mmu.mmu_enabled = 0;
1125  } else {
1126  armv7a->armv7a_mmu.mmu_enabled =
1127  (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1128  }
1130  (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1132  (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1133  cortex_a->curr_mode = armv7a->arm.core_mode;
1134 
1135  /* switch to SVC mode to read DACR */
1136  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1137  armv7a->arm.mrc(target, 15,
1138  0, 0, 3, 0,
1139  &cortex_a->cp15_dacr_reg);
1140 
1141  LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1142  cortex_a->cp15_dacr_reg);
1143 
1144  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1145  return ERROR_OK;
1146 }
1147 
1149  unsigned long bit_mask, unsigned long value)
1150 {
1151  struct armv7a_common *armv7a = target_to_armv7a(target);
1152  uint32_t dscr;
1153 
1154  /* Read DSCR */
1155  int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1156  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1157  if (retval != ERROR_OK)
1158  return retval;
1159 
1160  /* clear bitfield */
1161  dscr &= ~bit_mask;
1162  /* put new value */
1163  dscr |= value & bit_mask;
1164 
1165  /* write new DSCR */
1166  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1167  armv7a->debug_base + CPUDBG_DSCR, dscr);
1168  return retval;
1169 }
1170 
1171 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1172  int handle_breakpoints)
1173 {
1174  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1175  struct armv7a_common *armv7a = target_to_armv7a(target);
1176  struct arm *arm = &armv7a->arm;
1177  struct breakpoint *breakpoint = NULL;
1178  struct breakpoint stepbreakpoint;
1179  struct reg *r;
1180  int retval;
1181 
1182  if (target->state != TARGET_HALTED) {
1183  LOG_TARGET_ERROR(target, "not halted");
1184  return ERROR_TARGET_NOT_HALTED;
1185  }
1186 
1187  /* current = 1: continue on current pc, otherwise continue at <address> */
1188  r = arm->pc;
1189  if (!current)
1190  buf_set_u32(r->value, 0, 32, address);
1191  else
1192  address = buf_get_u32(r->value, 0, 32);
1193 
1194  /* The front-end may request us not to handle breakpoints.
1195  * But since Cortex-A uses breakpoint for single step,
1196  * we MUST handle breakpoints.
1197  */
1198  handle_breakpoints = 1;
1199  if (handle_breakpoints) {
1201  if (breakpoint)
1203  }
1204 
1205  /* Setup single step breakpoint */
1206  stepbreakpoint.address = address;
1207  stepbreakpoint.asid = 0;
1208  stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1209  ? 2 : 4;
1210  stepbreakpoint.type = BKPT_HARD;
1211  stepbreakpoint.is_set = false;
1212 
1213  /* Disable interrupts during single step if requested */
1214  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1216  if (retval != ERROR_OK)
1217  return retval;
1218  }
1219 
1220  /* Break on IVA mismatch */
1221  cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1222 
1224 
1225  retval = cortex_a_resume(target, 1, address, 0, 0);
1226  if (retval != ERROR_OK)
1227  return retval;
1228 
1229  int64_t then = timeval_ms();
1230  while (target->state != TARGET_HALTED) {
1231  retval = cortex_a_poll(target);
1232  if (retval != ERROR_OK)
1233  return retval;
1234  if (target->state == TARGET_HALTED)
1235  break;
1236  if (timeval_ms() > then + 1000) {
1237  LOG_ERROR("timeout waiting for target halt");
1238  return ERROR_FAIL;
1239  }
1240  }
1241 
1242  cortex_a_unset_breakpoint(target, &stepbreakpoint);
1243 
1244  /* Re-enable interrupts if they were disabled */
1245  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1247  if (retval != ERROR_OK)
1248  return retval;
1249  }
1250 
1251 
1253 
1254  if (breakpoint)
1256 
1257  if (target->state != TARGET_HALTED)
1258  LOG_DEBUG("target stepped");
1259 
1260  return ERROR_OK;
1261 }
1262 
1263 static int cortex_a_restore_context(struct target *target, bool bpwp)
1264 {
1265  struct armv7a_common *armv7a = target_to_armv7a(target);
1266 
1267  LOG_DEBUG(" ");
1268 
1269  if (armv7a->pre_restore_context)
1270  armv7a->pre_restore_context(target);
1271 
1272  return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1273 }
1274 
1275 /*
1276  * Cortex-A Breakpoint and watchpoint functions
1277  */
1278 
1279 /* Setup hardware Breakpoint Register Pair */
1281  struct breakpoint *breakpoint, uint8_t matchmode)
1282 {
1283  int retval;
1284  int brp_i = 0;
1285  uint32_t control;
1286  uint8_t byte_addr_select = 0x0F;
1287  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1288  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1289  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1290 
1291  if (breakpoint->is_set) {
1292  LOG_WARNING("breakpoint already set");
1293  return ERROR_OK;
1294  }
1295 
1296  if (breakpoint->type == BKPT_HARD) {
1297  while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1298  brp_i++;
1299  if (brp_i >= cortex_a->brp_num) {
1300  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1302  }
1303  breakpoint_hw_set(breakpoint, brp_i);
1304  if (breakpoint->length == 2)
1305  byte_addr_select = (3 << (breakpoint->address & 0x02));
1306  control = ((matchmode & 0x7) << 20)
1307  | (byte_addr_select << 5)
1308  | (3 << 1) | 1;
1309  brp_list[brp_i].used = true;
1310  brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1311  brp_list[brp_i].control = control;
1312  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1313  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1314  brp_list[brp_i].value);
1315  if (retval != ERROR_OK)
1316  return retval;
1317  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1318  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1319  brp_list[brp_i].control);
1320  if (retval != ERROR_OK)
1321  return retval;
1322  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1323  brp_list[brp_i].control,
1324  brp_list[brp_i].value);
1325  } else if (breakpoint->type == BKPT_SOFT) {
1326  uint8_t code[4];
1327  if (breakpoint->length == 2) {
1328  /* length == 2: Thumb breakpoint */
1329  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1330  } else if (breakpoint->length == 3) {
1331  /* length == 3: Thumb-2 breakpoint, actual encoding is
1332  * a regular Thumb BKPT instruction but we replace a
1333  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1334  * length
1335  */
1336  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1337  breakpoint->length = 4;
1338  } else {
1339  /* length == 4, normal ARM breakpoint */
1340  buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1341  }
1342 
1343  retval = target_read_memory(target,
1344  breakpoint->address & 0xFFFFFFFE,
1345  breakpoint->length, 1,
1347  if (retval != ERROR_OK)
1348  return retval;
1349 
1350  /* make sure data cache is cleaned & invalidated down to PoC */
1352 
1353  retval = target_write_memory(target,
1354  breakpoint->address & 0xFFFFFFFE,
1355  breakpoint->length, 1, code);
1356  if (retval != ERROR_OK)
1357  return retval;
1358 
1359  /* update i-cache at breakpoint location */
1362 
1363  breakpoint->is_set = true;
1364  }
1365 
1366  return ERROR_OK;
1367 }
1368 
1370  struct breakpoint *breakpoint, uint8_t matchmode)
1371 {
1372  int retval = ERROR_FAIL;
1373  int brp_i = 0;
1374  uint32_t control;
1375  uint8_t byte_addr_select = 0x0F;
1376  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1377  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1378  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1379 
1380  if (breakpoint->is_set) {
1381  LOG_WARNING("breakpoint already set");
1382  return retval;
1383  }
1384  /*check available context BRPs*/
1385  while ((brp_list[brp_i].used ||
1386  (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1387  brp_i++;
1388 
1389  if (brp_i >= cortex_a->brp_num) {
1390  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1391  return ERROR_FAIL;
1392  }
1393 
1394  breakpoint_hw_set(breakpoint, brp_i);
1395  control = ((matchmode & 0x7) << 20)
1396  | (byte_addr_select << 5)
1397  | (3 << 1) | 1;
1398  brp_list[brp_i].used = true;
1399  brp_list[brp_i].value = (breakpoint->asid);
1400  brp_list[brp_i].control = control;
1401  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1402  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1403  brp_list[brp_i].value);
1404  if (retval != ERROR_OK)
1405  return retval;
1406  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1407  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1408  brp_list[brp_i].control);
1409  if (retval != ERROR_OK)
1410  return retval;
1411  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1412  brp_list[brp_i].control,
1413  brp_list[brp_i].value);
1414  return ERROR_OK;
1415 
1416 }
1417 
1419 {
1420  int retval = ERROR_FAIL;
1421  int brp_1 = 0; /* holds the contextID pair */
1422  int brp_2 = 0; /* holds the IVA pair */
1423  uint32_t control_ctx, control_iva;
1424  uint8_t ctx_byte_addr_select = 0x0F;
1425  uint8_t iva_byte_addr_select = 0x0F;
1426  uint8_t ctx_machmode = 0x03;
1427  uint8_t iva_machmode = 0x01;
1428  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1429  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1430  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1431 
1432  if (breakpoint->is_set) {
1433  LOG_WARNING("breakpoint already set");
1434  return retval;
1435  }
1436  /*check available context BRPs*/
1437  while ((brp_list[brp_1].used ||
1438  (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1439  brp_1++;
1440 
1441  LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1442  if (brp_1 >= cortex_a->brp_num) {
1443  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1444  return ERROR_FAIL;
1445  }
1446 
1447  while ((brp_list[brp_2].used ||
1448  (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1449  brp_2++;
1450 
1451  LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1452  if (brp_2 >= cortex_a->brp_num) {
1453  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1454  return ERROR_FAIL;
1455  }
1456 
1457  breakpoint_hw_set(breakpoint, brp_1);
1458  breakpoint->linked_brp = brp_2;
1459  control_ctx = ((ctx_machmode & 0x7) << 20)
1460  | (brp_2 << 16)
1461  | (0 << 14)
1462  | (ctx_byte_addr_select << 5)
1463  | (3 << 1) | 1;
1464  brp_list[brp_1].used = true;
1465  brp_list[brp_1].value = (breakpoint->asid);
1466  brp_list[brp_1].control = control_ctx;
1467  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1468  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1469  brp_list[brp_1].value);
1470  if (retval != ERROR_OK)
1471  return retval;
1472  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1473  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1474  brp_list[brp_1].control);
1475  if (retval != ERROR_OK)
1476  return retval;
1477 
1478  control_iva = ((iva_machmode & 0x7) << 20)
1479  | (brp_1 << 16)
1480  | (iva_byte_addr_select << 5)
1481  | (3 << 1) | 1;
1482  brp_list[brp_2].used = true;
1483  brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1484  brp_list[brp_2].control = control_iva;
1485  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1486  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1487  brp_list[brp_2].value);
1488  if (retval != ERROR_OK)
1489  return retval;
1490  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1491  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1492  brp_list[brp_2].control);
1493  if (retval != ERROR_OK)
1494  return retval;
1495 
1496  return ERROR_OK;
1497 }
1498 
1500 {
1501  int retval;
1502  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1503  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1504  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1505 
1506  if (!breakpoint->is_set) {
1507  LOG_WARNING("breakpoint not set");
1508  return ERROR_OK;
1509  }
1510 
1511  if (breakpoint->type == BKPT_HARD) {
1512  if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1513  int brp_i = breakpoint->number;
1514  int brp_j = breakpoint->linked_brp;
1515  if (brp_i >= cortex_a->brp_num) {
1516  LOG_DEBUG("Invalid BRP number in breakpoint");
1517  return ERROR_OK;
1518  }
1519  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1520  brp_list[brp_i].control, brp_list[brp_i].value);
1521  brp_list[brp_i].used = false;
1522  brp_list[brp_i].value = 0;
1523  brp_list[brp_i].control = 0;
1524  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1525  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1526  brp_list[brp_i].control);
1527  if (retval != ERROR_OK)
1528  return retval;
1529  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1530  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1531  brp_list[brp_i].value);
1532  if (retval != ERROR_OK)
1533  return retval;
1534  if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1535  LOG_DEBUG("Invalid BRP number in breakpoint");
1536  return ERROR_OK;
1537  }
1538  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1539  brp_list[brp_j].control, brp_list[brp_j].value);
1540  brp_list[brp_j].used = false;
1541  brp_list[brp_j].value = 0;
1542  brp_list[brp_j].control = 0;
1543  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1544  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1545  brp_list[brp_j].control);
1546  if (retval != ERROR_OK)
1547  return retval;
1548  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1549  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1550  brp_list[brp_j].value);
1551  if (retval != ERROR_OK)
1552  return retval;
1553  breakpoint->linked_brp = 0;
1554  breakpoint->is_set = false;
1555  return ERROR_OK;
1556 
1557  } else {
1558  int brp_i = breakpoint->number;
1559  if (brp_i >= cortex_a->brp_num) {
1560  LOG_DEBUG("Invalid BRP number in breakpoint");
1561  return ERROR_OK;
1562  }
1563  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1564  brp_list[brp_i].control, brp_list[brp_i].value);
1565  brp_list[brp_i].used = false;
1566  brp_list[brp_i].value = 0;
1567  brp_list[brp_i].control = 0;
1568  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1569  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1570  brp_list[brp_i].control);
1571  if (retval != ERROR_OK)
1572  return retval;
1573  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1574  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1575  brp_list[brp_i].value);
1576  if (retval != ERROR_OK)
1577  return retval;
1578  breakpoint->is_set = false;
1579  return ERROR_OK;
1580  }
1581  } else {
1582 
1583  /* make sure data cache is cleaned & invalidated down to PoC */
1585  breakpoint->length);
1586 
1587  /* restore original instruction (kept in target endianness) */
1588  if (breakpoint->length == 4) {
1589  retval = target_write_memory(target,
1590  breakpoint->address & 0xFFFFFFFE,
1591  4, 1, breakpoint->orig_instr);
1592  if (retval != ERROR_OK)
1593  return retval;
1594  } else {
1595  retval = target_write_memory(target,
1596  breakpoint->address & 0xFFFFFFFE,
1597  2, 1, breakpoint->orig_instr);
1598  if (retval != ERROR_OK)
1599  return retval;
1600  }
1601 
1602  /* update i-cache at breakpoint location */
1604  breakpoint->length);
1606  breakpoint->length);
1607  }
1608  breakpoint->is_set = false;
1609 
1610  return ERROR_OK;
1611 }
1612 
1614  struct breakpoint *breakpoint)
1615 {
1616  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1617 
1618  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1619  LOG_INFO("no hardware breakpoint available");
1621  }
1622 
1623  if (breakpoint->type == BKPT_HARD)
1624  cortex_a->brp_num_available--;
1625 
1626  return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1627 }
1628 
1630  struct breakpoint *breakpoint)
1631 {
1632  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1633 
1634  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1635  LOG_INFO("no hardware breakpoint available");
1637  }
1638 
1639  if (breakpoint->type == BKPT_HARD)
1640  cortex_a->brp_num_available--;
1641 
1642  return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1643 }
1644 
1646  struct breakpoint *breakpoint)
1647 {
1648  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1649 
1650  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1651  LOG_INFO("no hardware breakpoint available");
1653  }
1654 
1655  if (breakpoint->type == BKPT_HARD)
1656  cortex_a->brp_num_available--;
1657 
1659 }
1660 
1661 
1663 {
1664  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1665 
1666 #if 0
1667 /* It is perfectly possible to remove breakpoints while the target is running */
1668  if (target->state != TARGET_HALTED) {
1669  LOG_WARNING("target not halted");
1670  return ERROR_TARGET_NOT_HALTED;
1671  }
1672 #endif
1673 
1674  if (breakpoint->is_set) {
1676  if (breakpoint->type == BKPT_HARD)
1677  cortex_a->brp_num_available++;
1678  }
1679 
1680 
1681  return ERROR_OK;
1682 }
1683 
1695 {
1696  int retval = ERROR_OK;
1697  int wrp_i = 0;
1698  uint32_t control;
1699  uint32_t address;
1700  uint8_t address_mask;
1701  uint8_t byte_address_select;
1702  uint8_t load_store_access_control = 0x3;
1703  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1704  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1705  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1706 
1707  if (watchpoint->is_set) {
1708  LOG_WARNING("watchpoint already set");
1709  return retval;
1710  }
1711 
1712  /* check available context WRPs */
1713  while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1714  wrp_i++;
1715 
1716  if (wrp_i >= cortex_a->wrp_num) {
1717  LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1718  return ERROR_FAIL;
1719  }
1720 
1721  if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1722  (watchpoint->length & (watchpoint->length - 1))) {
1723  LOG_WARNING("watchpoint length must be a power of 2");
1724  return ERROR_FAIL;
1725  }
1726 
1727  if (watchpoint->address & (watchpoint->length - 1)) {
1728  LOG_WARNING("watchpoint address must be aligned at length");
1729  return ERROR_FAIL;
1730  }
1731 
1732  /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1733  /* handle wp length 1 and 2 through byte select */
1734  switch (watchpoint->length) {
1735  case 1:
1736  byte_address_select = BIT(watchpoint->address & 0x3);
1737  address = watchpoint->address & ~0x3;
1738  address_mask = 0;
1739  break;
1740 
1741  case 2:
1742  byte_address_select = 0x03 << (watchpoint->address & 0x2);
1743  address = watchpoint->address & ~0x3;
1744  address_mask = 0;
1745  break;
1746 
1747  case 4:
1748  byte_address_select = 0x0f;
1750  address_mask = 0;
1751  break;
1752 
1753  default:
1754  byte_address_select = 0xff;
1756  address_mask = ilog2(watchpoint->length);
1757  break;
1758  }
1759 
1760  watchpoint_set(watchpoint, wrp_i);
1761  control = (address_mask << 24) |
1762  (byte_address_select << 5) |
1763  (load_store_access_control << 3) |
1764  (0x3 << 1) | 1;
1765  wrp_list[wrp_i].used = true;
1766  wrp_list[wrp_i].value = address;
1767  wrp_list[wrp_i].control = control;
1768 
1769  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1770  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1771  wrp_list[wrp_i].value);
1772  if (retval != ERROR_OK)
1773  return retval;
1774 
1775  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1776  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1777  wrp_list[wrp_i].control);
1778  if (retval != ERROR_OK)
1779  return retval;
1780 
1781  LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1782  wrp_list[wrp_i].control,
1783  wrp_list[wrp_i].value);
1784 
1785  return ERROR_OK;
1786 }
1787 
1797 {
1798  int retval;
1799  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1800  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1801  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1802 
1803  if (!watchpoint->is_set) {
1804  LOG_WARNING("watchpoint not set");
1805  return ERROR_OK;
1806  }
1807 
1808  int wrp_i = watchpoint->number;
1809  if (wrp_i >= cortex_a->wrp_num) {
1810  LOG_DEBUG("Invalid WRP number in watchpoint");
1811  return ERROR_OK;
1812  }
1813  LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1814  wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1815  wrp_list[wrp_i].used = false;
1816  wrp_list[wrp_i].value = 0;
1817  wrp_list[wrp_i].control = 0;
1818  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1819  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1820  wrp_list[wrp_i].control);
1821  if (retval != ERROR_OK)
1822  return retval;
1823  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1824  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1825  wrp_list[wrp_i].value);
1826  if (retval != ERROR_OK)
1827  return retval;
1828  watchpoint->is_set = false;
1829 
1830  return ERROR_OK;
1831 }
1832 
1842 {
1843  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1844 
1845  if (cortex_a->wrp_num_available < 1) {
1846  LOG_INFO("no hardware watchpoint available");
1848  }
1849 
1850  int retval = cortex_a_set_watchpoint(target, watchpoint);
1851  if (retval != ERROR_OK)
1852  return retval;
1853 
1854  cortex_a->wrp_num_available--;
1855  return ERROR_OK;
1856 }
1857 
1867 {
1868  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1869 
1870  if (watchpoint->is_set) {
1871  cortex_a->wrp_num_available++;
1873  }
1874  return ERROR_OK;
1875 }
1876 
1877 
1878 /*
1879  * Cortex-A Reset functions
1880  */
1881 
1883 {
1884  struct armv7a_common *armv7a = target_to_armv7a(target);
1885 
1886  LOG_DEBUG(" ");
1887 
1888  /* FIXME when halt is requested, make it work somehow... */
1889 
1890  /* This function can be called in "target not examined" state */
1891 
1892  /* Issue some kind of warm reset. */
1895  else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1896  /* REVISIT handle "pulls" cases, if there's
1897  * hardware that needs them to work.
1898  */
1899 
1900  /*
1901  * FIXME: fix reset when transport is not JTAG. This is a temporary
1902  * work-around for release v0.10 that is not intended to stay!
1903  */
1904  if (!transport_is_jtag() ||
1907 
1908  } else {
1909  LOG_ERROR("%s: how to reset?", target_name(target));
1910  return ERROR_FAIL;
1911  }
1912 
1913  /* registers are now invalid */
1914  if (armv7a->arm.core_cache)
1916 
1918 
1919  return ERROR_OK;
1920 }
1921 
1923 {
1924  struct armv7a_common *armv7a = target_to_armv7a(target);
1925  int retval;
1926 
1927  LOG_DEBUG(" ");
1928 
1929  /* be certain SRST is off */
1931 
1932  if (target_was_examined(target)) {
1933  retval = cortex_a_poll(target);
1934  if (retval != ERROR_OK)
1935  return retval;
1936  }
1937 
1938  if (target->reset_halt) {
1939  if (target->state != TARGET_HALTED) {
1940  LOG_WARNING("%s: ran after reset and before halt ...",
1941  target_name(target));
1942  if (target_was_examined(target)) {
1943  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1944  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1945  if (retval != ERROR_OK)
1946  return retval;
1947  } else
1949  }
1950  }
1951 
1952  return ERROR_OK;
1953 }
1954 
1955 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1956 {
1957  /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1958  * New desired mode must be in mode. Current value of DSCR must be in
1959  * *dscr, which is updated with new value.
1960  *
1961  * This function elides actually sending the mode-change over the debug
1962  * interface if the mode is already set as desired.
1963  */
1964  uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1965  if (new_dscr != *dscr) {
1966  struct armv7a_common *armv7a = target_to_armv7a(target);
1967  int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1968  armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1969  if (retval == ERROR_OK)
1970  *dscr = new_dscr;
1971  return retval;
1972  } else {
1973  return ERROR_OK;
1974  }
1975 }
1976 
1977 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1978  uint32_t value, uint32_t *dscr)
1979 {
1980  /* Waits until the specified bit(s) of DSCR take on a specified value. */
1981  struct armv7a_common *armv7a = target_to_armv7a(target);
1982  int64_t then;
1983  int retval;
1984 
1985  if ((*dscr & mask) == value)
1986  return ERROR_OK;
1987 
1988  then = timeval_ms();
1989  while (1) {
1990  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1991  armv7a->debug_base + CPUDBG_DSCR, dscr);
1992  if (retval != ERROR_OK) {
1993  LOG_ERROR("Could not read DSCR register");
1994  return retval;
1995  }
1996  if ((*dscr & mask) == value)
1997  break;
1998  if (timeval_ms() > then + 1000) {
1999  LOG_ERROR("timeout waiting for DSCR bit change");
2000  return ERROR_FAIL;
2001  }
2002  }
2003  return ERROR_OK;
2004 }
2005 
2006 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
2007  uint32_t *data, uint32_t *dscr)
2008 {
2009  int retval;
2010  struct armv7a_common *armv7a = target_to_armv7a(target);
2011 
2012  /* Move from coprocessor to R0. */
2013  retval = cortex_a_exec_opcode(target, opcode, dscr);
2014  if (retval != ERROR_OK)
2015  return retval;
2016 
2017  /* Move from R0 to DTRTX. */
2018  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2019  if (retval != ERROR_OK)
2020  return retval;
2021 
2022  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2023  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2024  * must also check TXfull_l). Most of the time this will be free
2025  * because TXfull_l will be set immediately and cached in dscr. */
2027  DSCR_DTRTX_FULL_LATCHED, dscr);
2028  if (retval != ERROR_OK)
2029  return retval;
2030 
2031  /* Read the value transferred to DTRTX. */
2032  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2033  armv7a->debug_base + CPUDBG_DTRTX, data);
2034  if (retval != ERROR_OK)
2035  return retval;
2036 
2037  return ERROR_OK;
2038 }
2039 
2040 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2041  uint32_t *dfsr, uint32_t *dscr)
2042 {
2043  int retval;
2044 
2045  if (dfar) {
2046  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2047  if (retval != ERROR_OK)
2048  return retval;
2049  }
2050 
2051  if (dfsr) {
2052  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2053  if (retval != ERROR_OK)
2054  return retval;
2055  }
2056 
2057  return ERROR_OK;
2058 }
2059 
2060 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2061  uint32_t data, uint32_t *dscr)
2062 {
2063  int retval;
2064  struct armv7a_common *armv7a = target_to_armv7a(target);
2065 
2066  /* Write the value into DTRRX. */
2067  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2068  armv7a->debug_base + CPUDBG_DTRRX, data);
2069  if (retval != ERROR_OK)
2070  return retval;
2071 
2072  /* Move from DTRRX to R0. */
2073  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2074  if (retval != ERROR_OK)
2075  return retval;
2076 
2077  /* Move from R0 to coprocessor. */
2078  retval = cortex_a_exec_opcode(target, opcode, dscr);
2079  if (retval != ERROR_OK)
2080  return retval;
2081 
2082  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2083  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2084  * check RXfull_l). Most of the time this will be free because RXfull_l
2085  * will be cleared immediately and cached in dscr. */
2087  if (retval != ERROR_OK)
2088  return retval;
2089 
2090  return ERROR_OK;
2091 }
2092 
2093 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2094  uint32_t dfsr, uint32_t *dscr)
2095 {
2096  int retval;
2097 
2098  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2099  if (retval != ERROR_OK)
2100  return retval;
2101 
2102  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2103  if (retval != ERROR_OK)
2104  return retval;
2105 
2106  return ERROR_OK;
2107 }
2108 
2109 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2110 {
2111  uint32_t status, upper4;
2112 
2113  if (dfsr & (1 << 9)) {
2114  /* LPAE format. */
2115  status = dfsr & 0x3f;
2116  upper4 = status >> 2;
2117  if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2119  else if (status == 33)
2121  else
2122  return ERROR_TARGET_DATA_ABORT;
2123  } else {
2124  /* Normal format. */
2125  status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2126  if (status == 1)
2128  else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2129  status == 9 || status == 11 || status == 13 || status == 15)
2131  else
2132  return ERROR_TARGET_DATA_ABORT;
2133  }
2134 }
2135 
2137  uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2138 {
2139  /* Writes count objects of size size from *buffer. Old value of DSCR must
2140  * be in *dscr; updated to new value. This is slow because it works for
2141  * non-word-sized objects. Avoid unaligned accesses as they do not work
2142  * on memory address space without "Normal" attribute. If size == 4 and
2143  * the address is aligned, cortex_a_write_cpu_memory_fast should be
2144  * preferred.
2145  * Preconditions:
2146  * - Address is in R0.
2147  * - R0 is marked dirty.
2148  */
2149  struct armv7a_common *armv7a = target_to_armv7a(target);
2150  struct arm *arm = &armv7a->arm;
2151  int retval;
2152 
2153  /* Mark register R1 as dirty, to use for transferring data. */
2154  arm_reg_current(arm, 1)->dirty = true;
2155 
2156  /* Switch to non-blocking mode if not already in that mode. */
2158  if (retval != ERROR_OK)
2159  return retval;
2160 
2161  /* Go through the objects. */
2162  while (count) {
2163  /* Write the value to store into DTRRX. */
2164  uint32_t data, opcode;
2165  if (size == 1)
2166  data = *buffer;
2167  else if (size == 2)
2169  else
2171  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2172  armv7a->debug_base + CPUDBG_DTRRX, data);
2173  if (retval != ERROR_OK)
2174  return retval;
2175 
2176  /* Transfer the value from DTRRX to R1. */
2177  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2178  if (retval != ERROR_OK)
2179  return retval;
2180 
2181  /* Write the value transferred to R1 into memory. */
2182  if (size == 1)
2183  opcode = ARMV4_5_STRB_IP(1, 0);
2184  else if (size == 2)
2185  opcode = ARMV4_5_STRH_IP(1, 0);
2186  else
2187  opcode = ARMV4_5_STRW_IP(1, 0);
2188  retval = cortex_a_exec_opcode(target, opcode, dscr);
2189  if (retval != ERROR_OK)
2190  return retval;
2191 
2192  /* Check for faults and return early. */
2194  return ERROR_OK; /* A data fault is not considered a system failure. */
2195 
2196  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2197  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2198  * must also check RXfull_l). Most of the time this will be free
2199  * because RXfull_l will be cleared immediately and cached in dscr. */
2201  if (retval != ERROR_OK)
2202  return retval;
2203 
2204  /* Advance. */
2205  buffer += size;
2206  --count;
2207  }
2208 
2209  return ERROR_OK;
2210 }
2211 
2213  uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2214 {
2215  /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2216  * in *dscr; updated to new value. This is fast but only works for
2217  * word-sized objects at aligned addresses.
2218  * Preconditions:
2219  * - Address is in R0 and must be a multiple of 4.
2220  * - R0 is marked dirty.
2221  */
2222  struct armv7a_common *armv7a = target_to_armv7a(target);
2223  int retval;
2224 
2225  /* Switch to fast mode if not already in that mode. */
2227  if (retval != ERROR_OK)
2228  return retval;
2229 
2230  /* Latch STC instruction. */
2231  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2232  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2233  if (retval != ERROR_OK)
2234  return retval;
2235 
2236  /* Transfer all the data and issue all the instructions. */
2237  return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2238  4, count, armv7a->debug_base + CPUDBG_DTRRX);
2239 }
2240 
2242  uint32_t address, uint32_t size,
2243  uint32_t count, const uint8_t *buffer)
2244 {
2245  /* Write memory through the CPU. */
2246  int retval, final_retval;
2247  struct armv7a_common *armv7a = target_to_armv7a(target);
2248  struct arm *arm = &armv7a->arm;
2249  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2250 
2251  LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2252  address, size, count);
2253  if (target->state != TARGET_HALTED) {
2254  LOG_TARGET_ERROR(target, "not halted");
2255  return ERROR_TARGET_NOT_HALTED;
2256  }
2257 
2258  if (!count)
2259  return ERROR_OK;
2260 
2261  /* Clear any abort. */
2262  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2264  if (retval != ERROR_OK)
2265  return retval;
2266 
2267  /* Read DSCR. */
2268  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2269  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2270  if (retval != ERROR_OK)
2271  return retval;
2272 
2273  /* Switch to non-blocking mode if not already in that mode. */
2275  if (retval != ERROR_OK)
2276  return retval;
2277 
2278  /* Mark R0 as dirty. */
2279  arm_reg_current(arm, 0)->dirty = true;
2280 
2281  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2282  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2283  if (retval != ERROR_OK)
2284  return retval;
2285 
2286  /* Get the memory address into R0. */
2287  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2288  armv7a->debug_base + CPUDBG_DTRRX, address);
2289  if (retval != ERROR_OK)
2290  return retval;
2291  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2292  if (retval != ERROR_OK)
2293  return retval;
2294 
2295  if (size == 4 && (address % 4) == 0) {
2296  /* We are doing a word-aligned transfer, so use fast mode. */
2298  } else {
2299  /* Use slow path. Adjust size for aligned accesses */
2300  switch (address % 4) {
2301  case 1:
2302  case 3:
2303  count *= size;
2304  size = 1;
2305  break;
2306  case 2:
2307  if (size == 4) {
2308  count *= 2;
2309  size = 2;
2310  }
2311  case 0:
2312  default:
2313  break;
2314  }
2316  }
2317 
2318  final_retval = retval;
2319 
2320  /* Switch to non-blocking mode if not already in that mode. */
2322  if (final_retval == ERROR_OK)
2323  final_retval = retval;
2324 
2325  /* Wait for last issued instruction to complete. */
2326  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2327  if (final_retval == ERROR_OK)
2328  final_retval = retval;
2329 
2330  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2331  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2332  * check RXfull_l). Most of the time this will be free because RXfull_l
2333  * will be cleared immediately and cached in dscr. However, don't do this
2334  * if there is fault, because then the instruction might not have completed
2335  * successfully. */
2336  if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2338  if (retval != ERROR_OK)
2339  return retval;
2340  }
2341 
2342  /* If there were any sticky abort flags, clear them. */
2344  fault_dscr = dscr;
2348  } else {
2349  fault_dscr = 0;
2350  }
2351 
2352  /* Handle synchronous data faults. */
2353  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2354  if (final_retval == ERROR_OK) {
2355  /* Final return value will reflect cause of fault. */
2356  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2357  if (retval == ERROR_OK) {
2358  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2359  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2360  } else
2361  final_retval = retval;
2362  }
2363  /* Fault destroyed DFAR/DFSR; restore them. */
2364  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2365  if (retval != ERROR_OK)
2366  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2367  }
2368 
2369  /* Handle asynchronous data faults. */
2370  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2371  if (final_retval == ERROR_OK)
2372  /* No other error has been recorded so far, so keep this one. */
2373  final_retval = ERROR_TARGET_DATA_ABORT;
2374  }
2375 
2376  /* If the DCC is nonempty, clear it. */
2377  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2378  uint32_t dummy;
2379  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2380  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2381  if (final_retval == ERROR_OK)
2382  final_retval = retval;
2383  }
2384  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2385  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2386  if (final_retval == ERROR_OK)
2387  final_retval = retval;
2388  }
2389 
2390  /* Done. */
2391  return final_retval;
2392 }
2393 
2395  uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2396 {
2397  /* Reads count objects of size size into *buffer. Old value of DSCR must be
2398  * in *dscr; updated to new value. This is slow because it works for
2399  * non-word-sized objects. Avoid unaligned accesses as they do not work
2400  * on memory address space without "Normal" attribute. If size == 4 and
2401  * the address is aligned, cortex_a_read_cpu_memory_fast should be
2402  * preferred.
2403  * Preconditions:
2404  * - Address is in R0.
2405  * - R0 is marked dirty.
2406  */
2407  struct armv7a_common *armv7a = target_to_armv7a(target);
2408  struct arm *arm = &armv7a->arm;
2409  int retval;
2410 
2411  /* Mark register R1 as dirty, to use for transferring data. */
2412  arm_reg_current(arm, 1)->dirty = true;
2413 
2414  /* Switch to non-blocking mode if not already in that mode. */
2416  if (retval != ERROR_OK)
2417  return retval;
2418 
2419  /* Go through the objects. */
2420  while (count) {
2421  /* Issue a load of the appropriate size to R1. */
2422  uint32_t opcode, data;
2423  if (size == 1)
2424  opcode = ARMV4_5_LDRB_IP(1, 0);
2425  else if (size == 2)
2426  opcode = ARMV4_5_LDRH_IP(1, 0);
2427  else
2428  opcode = ARMV4_5_LDRW_IP(1, 0);
2429  retval = cortex_a_exec_opcode(target, opcode, dscr);
2430  if (retval != ERROR_OK)
2431  return retval;
2432 
2433  /* Issue a write of R1 to DTRTX. */
2434  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2435  if (retval != ERROR_OK)
2436  return retval;
2437 
2438  /* Check for faults and return early. */
2440  return ERROR_OK; /* A data fault is not considered a system failure. */
2441 
2442  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2443  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2444  * must also check TXfull_l). Most of the time this will be free
2445  * because TXfull_l will be set immediately and cached in dscr. */
2447  DSCR_DTRTX_FULL_LATCHED, dscr);
2448  if (retval != ERROR_OK)
2449  return retval;
2450 
2451  /* Read the value transferred to DTRTX into the buffer. */
2452  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2453  armv7a->debug_base + CPUDBG_DTRTX, &data);
2454  if (retval != ERROR_OK)
2455  return retval;
2456  if (size == 1)
2457  *buffer = (uint8_t) data;
2458  else if (size == 2)
2459  target_buffer_set_u16(target, buffer, (uint16_t) data);
2460  else
2462 
2463  /* Advance. */
2464  buffer += size;
2465  --count;
2466  }
2467 
2468  return ERROR_OK;
2469 }
2470 
2472  uint32_t count, uint8_t *buffer, uint32_t *dscr)
2473 {
2474  /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2475  * *dscr; updated to new value. This is fast but only works for word-sized
2476  * objects at aligned addresses.
2477  * Preconditions:
2478  * - Address is in R0 and must be a multiple of 4.
2479  * - R0 is marked dirty.
2480  */
2481  struct armv7a_common *armv7a = target_to_armv7a(target);
2482  uint32_t u32;
2483  int retval;
2484 
2485  /* Switch to non-blocking mode if not already in that mode. */
2487  if (retval != ERROR_OK)
2488  return retval;
2489 
2490  /* Issue the LDC instruction via a write to ITR. */
2491  retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2492  if (retval != ERROR_OK)
2493  return retval;
2494 
2495  count--;
2496 
2497  if (count > 0) {
2498  /* Switch to fast mode if not already in that mode. */
2500  if (retval != ERROR_OK)
2501  return retval;
2502 
2503  /* Latch LDC instruction. */
2504  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2505  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2506  if (retval != ERROR_OK)
2507  return retval;
2508 
2509  /* Read the value transferred to DTRTX into the buffer. Due to fast
2510  * mode rules, this blocks until the instruction finishes executing and
2511  * then reissues the read instruction to read the next word from
2512  * memory. The last read of DTRTX in this call reads the second-to-last
2513  * word from memory and issues the read instruction for the last word.
2514  */
2515  retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2516  4, count, armv7a->debug_base + CPUDBG_DTRTX);
2517  if (retval != ERROR_OK)
2518  return retval;
2519 
2520  /* Advance. */
2521  buffer += count * 4;
2522  }
2523 
2524  /* Wait for last issued instruction to complete. */
2525  retval = cortex_a_wait_instrcmpl(target, dscr, false);
2526  if (retval != ERROR_OK)
2527  return retval;
2528 
2529  /* Switch to non-blocking mode if not already in that mode. */
2531  if (retval != ERROR_OK)
2532  return retval;
2533 
2534  /* Check for faults and return early. */
2536  return ERROR_OK; /* A data fault is not considered a system failure. */
2537 
2538  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2539  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2540  * check TXfull_l). Most of the time this will be free because TXfull_l
2541  * will be set immediately and cached in dscr. */
2543  DSCR_DTRTX_FULL_LATCHED, dscr);
2544  if (retval != ERROR_OK)
2545  return retval;
2546 
2547  /* Read the value transferred to DTRTX into the buffer. This is the last
2548  * word. */
2549  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2550  armv7a->debug_base + CPUDBG_DTRTX, &u32);
2551  if (retval != ERROR_OK)
2552  return retval;
2554 
2555  return ERROR_OK;
2556 }
2557 
2559  uint32_t address, uint32_t size,
2560  uint32_t count, uint8_t *buffer)
2561 {
2562  /* Read memory through the CPU. */
2563  int retval, final_retval;
2564  struct armv7a_common *armv7a = target_to_armv7a(target);
2565  struct arm *arm = &armv7a->arm;
2566  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2567 
2568  LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2569  address, size, count);
2570  if (target->state != TARGET_HALTED) {
2571  LOG_TARGET_ERROR(target, "not halted");
2572  return ERROR_TARGET_NOT_HALTED;
2573  }
2574 
2575  if (!count)
2576  return ERROR_OK;
2577 
2578  /* Clear any abort. */
2579  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2581  if (retval != ERROR_OK)
2582  return retval;
2583 
2584  /* Read DSCR */
2585  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2586  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2587  if (retval != ERROR_OK)
2588  return retval;
2589 
2590  /* Switch to non-blocking mode if not already in that mode. */
2592  if (retval != ERROR_OK)
2593  return retval;
2594 
2595  /* Mark R0 as dirty. */
2596  arm_reg_current(arm, 0)->dirty = true;
2597 
2598  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2599  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2600  if (retval != ERROR_OK)
2601  return retval;
2602 
2603  /* Get the memory address into R0. */
2604  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2605  armv7a->debug_base + CPUDBG_DTRRX, address);
2606  if (retval != ERROR_OK)
2607  return retval;
2608  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2609  if (retval != ERROR_OK)
2610  return retval;
2611 
2612  if (size == 4 && (address % 4) == 0) {
2613  /* We are doing a word-aligned transfer, so use fast mode. */
2614  retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2615  } else {
2616  /* Use slow path. Adjust size for aligned accesses */
2617  switch (address % 4) {
2618  case 1:
2619  case 3:
2620  count *= size;
2621  size = 1;
2622  break;
2623  case 2:
2624  if (size == 4) {
2625  count *= 2;
2626  size = 2;
2627  }
2628  break;
2629  case 0:
2630  default:
2631  break;
2632  }
2634  }
2635 
2636  final_retval = retval;
2637 
2638  /* Switch to non-blocking mode if not already in that mode. */
2640  if (final_retval == ERROR_OK)
2641  final_retval = retval;
2642 
2643  /* Wait for last issued instruction to complete. */
2644  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2645  if (final_retval == ERROR_OK)
2646  final_retval = retval;
2647 
2648  /* If there were any sticky abort flags, clear them. */
2650  fault_dscr = dscr;
2654  } else {
2655  fault_dscr = 0;
2656  }
2657 
2658  /* Handle synchronous data faults. */
2659  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2660  if (final_retval == ERROR_OK) {
2661  /* Final return value will reflect cause of fault. */
2662  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2663  if (retval == ERROR_OK) {
2664  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2665  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2666  } else
2667  final_retval = retval;
2668  }
2669  /* Fault destroyed DFAR/DFSR; restore them. */
2670  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2671  if (retval != ERROR_OK)
2672  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2673  }
2674 
2675  /* Handle asynchronous data faults. */
2676  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2677  if (final_retval == ERROR_OK)
2678  /* No other error has been recorded so far, so keep this one. */
2679  final_retval = ERROR_TARGET_DATA_ABORT;
2680  }
2681 
2682  /* If the DCC is nonempty, clear it. */
2683  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2684  uint32_t dummy;
2685  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2686  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2687  if (final_retval == ERROR_OK)
2688  final_retval = retval;
2689  }
2690  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2691  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2692  if (final_retval == ERROR_OK)
2693  final_retval = retval;
2694  }
2695 
2696  /* Done. */
2697  return final_retval;
2698 }
2699 
2700 
2701 /*
2702  * Cortex-A Memory access
2703  *
2704  * This is same Cortex-M3 but we must also use the correct
2705  * ap number for every access.
2706  */
2707 
2709  target_addr_t address, uint32_t size,
2710  uint32_t count, uint8_t *buffer)
2711 {
2712  int retval;
2713 
2714  if (!count || !buffer)
2716 
2717  LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2718  address, size, count);
2719 
2720  /* read memory through the CPU */
2724 
2725  return retval;
2726 }
2727 
2729  uint32_t size, uint32_t count, uint8_t *buffer)
2730 {
2731  int retval;
2732 
2733  /* cortex_a handles unaligned memory access */
2734  LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2735  address, size, count);
2736 
2740 
2741  return retval;
2742 }
2743 
2745  target_addr_t address, uint32_t size,
2746  uint32_t count, const uint8_t *buffer)
2747 {
2748  int retval;
2749 
2750  if (!count || !buffer)
2752 
2753  LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2754  address, size, count);
2755 
2756  /* write memory through the CPU */
2760 
2761  return retval;
2762 }
2763 
2765  uint32_t size, uint32_t count, const uint8_t *buffer)
2766 {
2767  int retval;
2768 
2769  /* cortex_a handles unaligned memory access */
2770  LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2771  address, size, count);
2772 
2776  return retval;
2777 }
2778 
2780  uint32_t count, uint8_t *buffer)
2781 {
2782  uint32_t size;
2783 
2784  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2785  * will have something to do with the size we leave to it. */
2786  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2787  if (address & size) {
2788  int retval = target_read_memory(target, address, size, 1, buffer);
2789  if (retval != ERROR_OK)
2790  return retval;
2791  address += size;
2792  count -= size;
2793  buffer += size;
2794  }
2795  }
2796 
2797  /* Read the data with as large access size as possible. */
2798  for (; size > 0; size /= 2) {
2799  uint32_t aligned = count - count % size;
2800  if (aligned > 0) {
2801  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2802  if (retval != ERROR_OK)
2803  return retval;
2804  address += aligned;
2805  count -= aligned;
2806  buffer += aligned;
2807  }
2808  }
2809 
2810  return ERROR_OK;
2811 }
2812 
2814  uint32_t count, const uint8_t *buffer)
2815 {
2816  uint32_t size;
2817 
2818  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2819  * will have something to do with the size we leave to it. */
2820  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2821  if (address & size) {
2822  int retval = target_write_memory(target, address, size, 1, buffer);
2823  if (retval != ERROR_OK)
2824  return retval;
2825  address += size;
2826  count -= size;
2827  buffer += size;
2828  }
2829  }
2830 
2831  /* Write the data with as large access size as possible. */
2832  for (; size > 0; size /= 2) {
2833  uint32_t aligned = count - count % size;
2834  if (aligned > 0) {
2835  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2836  if (retval != ERROR_OK)
2837  return retval;
2838  address += aligned;
2839  count -= aligned;
2840  buffer += aligned;
2841  }
2842  }
2843 
2844  return ERROR_OK;
2845 }
2846 
2848 {
2849  struct target *target = priv;
2850  struct armv7a_common *armv7a = target_to_armv7a(target);
2851  int retval;
2852 
2854  return ERROR_OK;
2855  if (!target->dbg_msg_enabled)
2856  return ERROR_OK;
2857 
2858  if (target->state == TARGET_RUNNING) {
2859  uint32_t request;
2860  uint32_t dscr;
2861  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2862  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2863 
2864  /* check if we have data */
2865  int64_t then = timeval_ms();
2866  while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2867  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2868  armv7a->debug_base + CPUDBG_DTRTX, &request);
2869  if (retval == ERROR_OK) {
2870  target_request(target, request);
2871  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2872  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2873  }
2874  if (timeval_ms() > then + 1000) {
2875  LOG_ERROR("Timeout waiting for dtr tx full");
2876  return ERROR_FAIL;
2877  }
2878  }
2879  }
2880 
2881  return ERROR_OK;
2882 }
2883 
2884 /*
2885  * Cortex-A target information and configuration
2886  */
2887 
2889 {
2890  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2891  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2892  struct adiv5_dap *swjdp = armv7a->arm.dap;
2894 
2895  int i;
2896  int retval = ERROR_OK;
2897  uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2898 
2899  if (!armv7a->debug_ap) {
2900  if (pc->ap_num == DP_APSEL_INVALID) {
2901  /* Search for the APB-AP - it is needed for access to debug registers */
2902  retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2903  if (retval != ERROR_OK) {
2904  LOG_ERROR("Could not find APB-AP for debug access");
2905  return retval;
2906  }
2907  } else {
2908  armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2909  if (!armv7a->debug_ap) {
2910  LOG_ERROR("Cannot get AP");
2911  return ERROR_FAIL;
2912  }
2913  }
2914  }
2915 
2916  retval = mem_ap_init(armv7a->debug_ap);
2917  if (retval != ERROR_OK) {
2918  LOG_ERROR("Could not initialize the APB-AP");
2919  return retval;
2920  }
2921 
2922  armv7a->debug_ap->memaccess_tck = 80;
2923 
2924  if (!target->dbgbase_set) {
2925  LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2926  target->cmd_name);
2927  /* Lookup Processor DAP */
2929  &armv7a->debug_base, target->coreid);
2930  if (retval != ERROR_OK) {
2931  LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2932  target->cmd_name);
2933  return retval;
2934  }
2935  LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2936  target->coreid, armv7a->debug_base);
2937  } else
2938  armv7a->debug_base = target->dbgbase;
2939 
2940  if ((armv7a->debug_base & (1UL<<31)) == 0)
2941  LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2942  "Please fix the target configuration.", target_name(target));
2943 
2944  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2945  armv7a->debug_base + CPUDBG_DIDR, &didr);
2946  if (retval != ERROR_OK) {
2947  LOG_DEBUG("Examine %s failed", "DIDR");
2948  return retval;
2949  }
2950 
2951  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2952  armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2953  if (retval != ERROR_OK) {
2954  LOG_DEBUG("Examine %s failed", "CPUID");
2955  return retval;
2956  }
2957 
2958  LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2959  LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2960 
2961  cortex_a->didr = didr;
2962  cortex_a->cpuid = cpuid;
2963 
2964  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2965  armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2966  if (retval != ERROR_OK)
2967  return retval;
2968  LOG_TARGET_DEBUG(target, "DBGPRSR 0x%" PRIx32, dbg_osreg);
2969 
2970  if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2971  LOG_TARGET_ERROR(target, "powered down!");
2972  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2973  return ERROR_TARGET_INIT_FAILED;
2974  }
2975 
2976  if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2977  LOG_TARGET_DEBUG(target, "was reset!");
2978 
2979  /* Read DBGOSLSR and check if OSLK is implemented */
2980  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2981  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2982  if (retval != ERROR_OK)
2983  return retval;
2984  LOG_TARGET_DEBUG(target, "DBGOSLSR 0x%" PRIx32, dbg_osreg);
2985 
2986  /* check if OS Lock is implemented */
2987  if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2988  /* check if OS Lock is set */
2989  if (dbg_osreg & OSLSR_OSLK) {
2990  LOG_TARGET_DEBUG(target, "OSLock set! Trying to unlock");
2991 
2992  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2993  armv7a->debug_base + CPUDBG_OSLAR,
2994  0);
2995  if (retval == ERROR_OK)
2996  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2997  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2998 
2999  /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3000  if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3001  LOG_TARGET_ERROR(target, "OSLock sticky, core not powered?");
3002  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3003  return ERROR_TARGET_INIT_FAILED;
3004  }
3005  }
3006  }
3007 
3008  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3009  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
3010  if (retval != ERROR_OK)
3011  return retval;
3012 
3013  if (dbg_idpfr1 & 0x000000f0) {
3014  LOG_TARGET_DEBUG(target, "has security extensions");
3016  }
3017  if (dbg_idpfr1 & 0x0000f000) {
3018  LOG_TARGET_DEBUG(target, "has virtualization extensions");
3019  /*
3020  * overwrite and simplify the checks.
3021  * virtualization extensions require implementation of security extension
3022  */
3024  }
3025 
3026  /* Avoid recreating the registers cache */
3027  if (!target_was_examined(target)) {
3028  retval = cortex_a_dpm_setup(cortex_a, didr);
3029  if (retval != ERROR_OK)
3030  return retval;
3031  }
3032 
3033  /* Setup Breakpoint Register Pairs */
3034  cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3035  cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3036  cortex_a->brp_num_available = cortex_a->brp_num;
3037  free(cortex_a->brp_list);
3038  cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3039 /* cortex_a->brb_enabled = ????; */
3040  for (i = 0; i < cortex_a->brp_num; i++) {
3041  cortex_a->brp_list[i].used = false;
3042  if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3043  cortex_a->brp_list[i].type = BRP_NORMAL;
3044  else
3045  cortex_a->brp_list[i].type = BRP_CONTEXT;
3046  cortex_a->brp_list[i].value = 0;
3047  cortex_a->brp_list[i].control = 0;
3048  cortex_a->brp_list[i].brpn = i;
3049  }
3050 
3051  LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3052 
3053  /* Setup Watchpoint Register Pairs */
3054  cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3055  cortex_a->wrp_num_available = cortex_a->wrp_num;
3056  free(cortex_a->wrp_list);
3057  cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3058  for (i = 0; i < cortex_a->wrp_num; i++) {
3059  cortex_a->wrp_list[i].used = false;
3060  cortex_a->wrp_list[i].value = 0;
3061  cortex_a->wrp_list[i].control = 0;
3062  cortex_a->wrp_list[i].wrpn = i;
3063  }
3064 
3065  LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3066 
3067  /* select debug_ap as default */
3068  swjdp->apsel = armv7a->debug_ap->ap_num;
3069 
3071  return ERROR_OK;
3072 }
3073 
3074 static int cortex_a_examine(struct target *target)
3075 {
3076  int retval = ERROR_OK;
3077 
3078  /* Reestablish communication after target reset */
3079  retval = cortex_a_examine_first(target);
3080 
3081  /* Configure core debug access */
3082  if (retval == ERROR_OK)
3084 
3085  return retval;
3086 }
3087 
3088 /*
3089  * Cortex-A target creation and initialization
3090  */
3091 
3092 static int cortex_a_init_target(struct command_context *cmd_ctx,
3093  struct target *target)
3094 {
3095  /* examine_first() does a bunch of this */
3097  return ERROR_OK;
3098 }
3099 
3101  struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3102 {
3103  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3104 
3105  /* Setup struct cortex_a_common */
3106  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3107  armv7a->arm.dap = dap;
3108 
3109  /* register arch-specific functions */
3110  armv7a->examine_debug_reason = NULL;
3111 
3113 
3114  armv7a->pre_restore_context = NULL;
3115 
3117 
3118 
3119 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3120 
3121  /* REVISIT v7a setup should be in a v7a-specific routine */
3122  armv7a_init_arch_info(target, armv7a);
3125 
3126  return ERROR_OK;
3127 }
3128 
3129 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3130 {
3131  struct cortex_a_common *cortex_a;
3132  struct adiv5_private_config *pc;
3133 
3134  if (!target->private_config)
3135  return ERROR_FAIL;
3136 
3137  pc = (struct adiv5_private_config *)target->private_config;
3138 
3139  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3140  if (!cortex_a) {
3141  LOG_ERROR("Out of memory");
3142  return ERROR_FAIL;
3143  }
3144  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3145  cortex_a->armv7a_common.is_armv7r = false;
3147 
3148  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3149 }
3150 
3151 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3152 {
3153  struct cortex_a_common *cortex_a;
3154  struct adiv5_private_config *pc;
3155 
3156  pc = (struct adiv5_private_config *)target->private_config;
3157  if (adiv5_verify_config(pc) != ERROR_OK)
3158  return ERROR_FAIL;
3159 
3160  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3161  if (!cortex_a) {
3162  LOG_ERROR("Out of memory");
3163  return ERROR_FAIL;
3164  }
3165  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3166  cortex_a->armv7a_common.is_armv7r = true;
3167 
3168  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3169 }
3170 
3172 {
3173  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3174  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3175  struct arm_dpm *dpm = &armv7a->dpm;
3176  uint32_t dscr;
3177  int retval;
3178 
3179  if (target_was_examined(target)) {
3180  /* Disable halt for breakpoint, watchpoint and vector catch */
3181  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3182  armv7a->debug_base + CPUDBG_DSCR, &dscr);
3183  if (retval == ERROR_OK)
3185  armv7a->debug_base + CPUDBG_DSCR,
3187  }
3188 
3189  if (armv7a->debug_ap)
3190  dap_put_ap(armv7a->debug_ap);
3191 
3192  free(cortex_a->wrp_list);
3193  free(cortex_a->brp_list);
3194  arm_free_reg_cache(dpm->arm);
3195  free(dpm->dbp);
3196  free(dpm->dwp);
3197  free(target->private_config);
3198  free(cortex_a);
3199 }
3200 
3201 static int cortex_a_mmu(struct target *target, int *enabled)
3202 {
3203  struct armv7a_common *armv7a = target_to_armv7a(target);
3204 
3205  if (target->state != TARGET_HALTED) {
3206  LOG_TARGET_ERROR(target, "not halted");
3207  return ERROR_TARGET_NOT_HALTED;
3208  }
3209 
3210  if (armv7a->is_armv7r)
3211  *enabled = 0;
3212  else
3214 
3215  return ERROR_OK;
3216 }
3217 
3218 static int cortex_a_virt2phys(struct target *target,
3219  target_addr_t virt, target_addr_t *phys)
3220 {
3221  int retval;
3222  int mmu_enabled = 0;
3223 
3224  /*
3225  * If the MMU was not enabled at debug entry, there is no
3226  * way of knowing if there was ever a valid configuration
3227  * for it and thus it's not safe to enable it. In this case,
3228  * just return the virtual address as physical.
3229  */
3230  cortex_a_mmu(target, &mmu_enabled);
3231  if (!mmu_enabled) {
3232  *phys = virt;
3233  return ERROR_OK;
3234  }
3235 
3236  /* mmu must be enable in order to get a correct translation */
3237  retval = cortex_a_mmu_modify(target, 1);
3238  if (retval != ERROR_OK)
3239  return retval;
3240  return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3241  phys, 1);
3242 }
3243 
3244 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3245 {
3247  struct armv7a_common *armv7a = target_to_armv7a(target);
3248 
3250  &armv7a->armv7a_mmu.armv7a_cache);
3251 }
3252 
3253 
3254 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3255 {
3257  if (!target_was_examined(target)) {
3258  LOG_ERROR("target not examined yet");
3259  return ERROR_FAIL;
3260  }
3261 
3263 }
3264 
3265 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3266 {
3268  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3269 
3270  static const struct nvp nvp_maskisr_modes[] = {
3271  { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3272  { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3273  { .name = NULL, .value = -1 },
3274  };
3275  const struct nvp *n;
3276 
3277  if (CMD_ARGC > 0) {
3278  n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3279  if (!n->name) {
3280  LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3282  }
3283 
3284  cortex_a->isrmasking_mode = n->value;
3285  }
3286 
3287  n = nvp_value2name(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3288  command_print(CMD, "cortex_a interrupt mask %s", n->name);
3289 
3290  return ERROR_OK;
3291 }
3292 
3293 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3294 {
3296  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3297 
3298  static const struct nvp nvp_dacrfixup_modes[] = {
3299  { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3300  { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3301  { .name = NULL, .value = -1 },
3302  };
3303  const struct nvp *n;
3304 
3305  if (CMD_ARGC > 0) {
3306  n = nvp_name2value(nvp_dacrfixup_modes, CMD_ARGV[0]);
3307  if (!n->name)
3309  cortex_a->dacrfixup_mode = n->value;
3310 
3311  }
3312 
3313  n = nvp_value2name(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3314  command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3315 
3316  return ERROR_OK;
3317 }
3318 
3319 static const struct command_registration cortex_a_exec_command_handlers[] = {
3320  {
3321  .name = "cache_info",
3322  .handler = cortex_a_handle_cache_info_command,
3323  .mode = COMMAND_EXEC,
3324  .help = "display information about target caches",
3325  .usage = "",
3326  },
3327  {
3328  .name = "dbginit",
3329  .handler = cortex_a_handle_dbginit_command,
3330  .mode = COMMAND_EXEC,
3331  .help = "Initialize core debug",
3332  .usage = "",
3333  },
3334  {
3335  .name = "maskisr",
3336  .handler = handle_cortex_a_mask_interrupts_command,
3337  .mode = COMMAND_ANY,
3338  .help = "mask cortex_a interrupts",
3339  .usage = "['on'|'off']",
3340  },
3341  {
3342  .name = "dacrfixup",
3343  .handler = handle_cortex_a_dacrfixup_command,
3344  .mode = COMMAND_ANY,
3345  .help = "set domain access control (DACR) to all-manager "
3346  "on memory access",
3347  .usage = "['on'|'off']",
3348  },
3349  {
3350  .chain = armv7a_mmu_command_handlers,
3351  },
3352  {
3354  },
3355 
3357 };
3358 static const struct command_registration cortex_a_command_handlers[] = {
3359  {
3361  },
3362  {
3364  },
3365  {
3366  .name = "cortex_a",
3367  .mode = COMMAND_ANY,
3368  .help = "Cortex-A command group",
3369  .usage = "",
3371  },
3373 };
3374 
3375 struct target_type cortexa_target = {
3376  .name = "cortex_a",
3377 
3378  .poll = cortex_a_poll,
3379  .arch_state = armv7a_arch_state,
3380 
3381  .halt = cortex_a_halt,
3382  .resume = cortex_a_resume,
3383  .step = cortex_a_step,
3384 
3385  .assert_reset = cortex_a_assert_reset,
3386  .deassert_reset = cortex_a_deassert_reset,
3387 
3388  /* REVISIT allow exporting VFP3 registers ... */
3389  .get_gdb_arch = arm_get_gdb_arch,
3390  .get_gdb_reg_list = arm_get_gdb_reg_list,
3391 
3392  .read_memory = cortex_a_read_memory,
3393  .write_memory = cortex_a_write_memory,
3394 
3395  .read_buffer = cortex_a_read_buffer,
3396  .write_buffer = cortex_a_write_buffer,
3397 
3398  .checksum_memory = arm_checksum_memory,
3399  .blank_check_memory = arm_blank_check_memory,
3400 
3401  .run_algorithm = armv4_5_run_algorithm,
3402 
3403  .add_breakpoint = cortex_a_add_breakpoint,
3404  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3405  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3406  .remove_breakpoint = cortex_a_remove_breakpoint,
3407  .add_watchpoint = cortex_a_add_watchpoint,
3408  .remove_watchpoint = cortex_a_remove_watchpoint,
3409 
3410  .commands = cortex_a_command_handlers,
3411  .target_create = cortex_a_target_create,
3412  .target_jim_configure = adiv5_jim_configure,
3413  .init_target = cortex_a_init_target,
3414  .examine = cortex_a_examine,
3415  .deinit_target = cortex_a_deinit_target,
3416 
3417  .read_phys_memory = cortex_a_read_phys_memory,
3418  .write_phys_memory = cortex_a_write_phys_memory,
3419  .mmu = cortex_a_mmu,
3420  .virt2phys = cortex_a_virt2phys,
3421 };
3422 
3423 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3424  {
3425  .name = "dbginit",
3426  .handler = cortex_a_handle_dbginit_command,
3427  .mode = COMMAND_EXEC,
3428  .help = "Initialize core debug",
3429  .usage = "",
3430  },
3431  {
3432  .name = "maskisr",
3433  .handler = handle_cortex_a_mask_interrupts_command,
3434  .mode = COMMAND_EXEC,
3435  .help = "mask cortex_r4 interrupts",
3436  .usage = "['on'|'off']",
3437  },
3438 
3440 };
3441 static const struct command_registration cortex_r4_command_handlers[] = {
3442  {
3444  },
3445  {
3446  .name = "cortex_r4",
3447  .mode = COMMAND_ANY,
3448  .help = "Cortex-R4 command group",
3449  .usage = "",
3451  },
3453 };
3454 
3455 struct target_type cortexr4_target = {
3456  .name = "cortex_r4",
3457 
3458  .poll = cortex_a_poll,
3459  .arch_state = armv7a_arch_state,
3460 
3461  .halt = cortex_a_halt,
3462  .resume = cortex_a_resume,
3463  .step = cortex_a_step,
3464 
3465  .assert_reset = cortex_a_assert_reset,
3466  .deassert_reset = cortex_a_deassert_reset,
3467 
3468  /* REVISIT allow exporting VFP3 registers ... */
3469  .get_gdb_arch = arm_get_gdb_arch,
3470  .get_gdb_reg_list = arm_get_gdb_reg_list,
3471 
3472  .read_memory = cortex_a_read_phys_memory,
3473  .write_memory = cortex_a_write_phys_memory,
3474 
3475  .checksum_memory = arm_checksum_memory,
3476  .blank_check_memory = arm_blank_check_memory,
3477 
3478  .run_algorithm = armv4_5_run_algorithm,
3479 
3480  .add_breakpoint = cortex_a_add_breakpoint,
3481  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3482  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3483  .remove_breakpoint = cortex_a_remove_breakpoint,
3484  .add_watchpoint = cortex_a_add_watchpoint,
3485  .remove_watchpoint = cortex_a_remove_watchpoint,
3486 
3487  .commands = cortex_r4_command_handlers,
3488  .target_create = cortex_r4_target_create,
3489  .target_jim_configure = adiv5_jim_configure,
3490  .init_target = cortex_a_init_target,
3491  .examine = cortex_a_examine,
3492  .deinit_target = cortex_a_deinit_target,
3493 };
#define BRP_CONTEXT
Definition: aarch64.h:23
#define CPUDBG_CPUID
Definition: aarch64.h:14
#define BRP_NORMAL
Definition: aarch64.h:22
#define CPUDBG_LOCKACCESS
Definition: aarch64.h:19
int arm_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Runs ARM code in the target to check whether a memory block holds all ones.
Definition: armv4_5.c:1687
struct reg * arm_reg_current(struct arm *arm, unsigned int regnum)
Returns handle to the register currently mapped to a given number.
Definition: armv4_5.c:516
@ ARM_VFP_V3
Definition: arm.h:163
int arm_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Runs ARM code in the target to calculate a CRC32 checksum.
Definition: armv4_5.c:1614
const char * arm_get_gdb_arch(const struct target *target)
Definition: armv4_5.c:1281
int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Definition: armv4_5.c:1286
@ ARM_MODE_ANY
Definition: arm.h:106
@ ARM_MODE_SVC
Definition: arm.h:86
void arm_free_reg_cache(struct arm *arm)
Definition: armv4_5.c:775
@ ARM_STATE_JAZELLE
Definition: arm.h:153
@ ARM_STATE_THUMB
Definition: arm.h:152
@ ARM_STATE_ARM
Definition: arm.h:151
@ ARM_STATE_AARCH64
Definition: arm.h:155
@ ARM_STATE_THUMB_EE
Definition: arm.h:154
const struct command_registration arm_command_handlers[]
Definition: armv4_5.c:1261
int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Definition: armv4_5.c:1588
@ ARM_CORE_TYPE_SEC_EXT
Definition: arm.h:47
@ ARM_CORE_TYPE_VIRT_EXT
Definition: arm.h:48
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2287
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:734
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2484
int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Asynchronous (queued) write of a word to memory or a system register.
Definition: arm_adi_v5.c:289
int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2479
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1107
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:740
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:266
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1189
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1209
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:888
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:318
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:491
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:110
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:648
#define ARM_CS_C9_DEVTYPE_CORE_DEBUG
Definition: arm_coresight.h:88
void arm_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
Definition: arm_dpm.c:1055
int arm_dpm_read_current_registers(struct arm_dpm *dpm)
Read basic registers of the current context: R0 to R15, and CPSR; sets the core mode (such as USR or ...
Definition: arm_dpm.c:377
int arm_dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
Definition: arm_dpm.c:146
int arm_dpm_setup(struct arm_dpm *dpm)
Hooks up this DPM to its associated target; call only once.
Definition: arm_dpm.c:1093
int arm_dpm_read_reg(struct arm_dpm *dpm, struct reg *r, unsigned int regnum)
Definition: arm_dpm.c:208
int arm_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
Writes all modified core registers for all processor modes.
Definition: arm_dpm.c:485
void arm_dpm_report_wfar(struct arm_dpm *dpm, uint32_t addr)
Definition: arm_dpm.c:1031
int arm_dpm_initialize(struct arm_dpm *dpm)
Reinitializes DPM state at the beginning of a new debug session or after a reset which may have affec...
Definition: arm_dpm.c:1160
#define OSLSR_OSLM
Definition: arm_dpm.h:248
#define DRCR_HALT
Definition: arm_dpm.h:223
#define DSCR_INSTR_COMP
Definition: arm_dpm.h:190
#define DRCR_CLEAR_EXCEPTIONS
Definition: arm_dpm.h:225
#define DSCR_INT_DIS
Definition: arm_dpm.h:180
#define OSLSR_OSLM0
Definition: arm_dpm.h:244
#define DSCR_STICKY_ABORT_IMPRECISE
Definition: arm_dpm.h:176
#define DSCR_EXT_DCC_FAST_MODE
Definition: arm_dpm.h:216
#define OSLSR_OSLK
Definition: arm_dpm.h:245
#define DSCR_DTR_TX_FULL
Definition: arm_dpm.h:194
#define DSCR_DTRRX_FULL_LATCHED
Definition: arm_dpm.h:193
#define DRCR_RESTART
Definition: arm_dpm.h:224
#define DSCR_RUN_MODE(dscr)
Definition: arm_dpm.h:198
#define DSCR_STICKY_ABORT_PRECISE
Definition: arm_dpm.h:175
#define OSLSR_OSLM1
Definition: arm_dpm.h:247
#define DSCR_CORE_HALTED
Definition: arm_dpm.h:172
#define DSCR_ITR_EN
Definition: arm_dpm.h:182
#define DSCR_EXT_DCC_NON_BLOCKING
Definition: arm_dpm.h:214
#define PRSR_STICKY_RESET_STATUS
Definition: arm_dpm.h:238
#define PRSR_POWERUP_STATUS
Definition: arm_dpm.h:235
#define DSCR_EXT_DCC_MASK
Definition: arm_dpm.h:189
#define DSCR_DTR_RX_FULL
Definition: arm_dpm.h:195
#define DSCR_CORE_RESTARTED
Definition: arm_dpm.h:173
#define DSCR_HALT_DBG_MODE
Definition: arm_dpm.h:183
#define DSCR_DTRTX_FULL_LATCHED
Definition: arm_dpm.h:192
Macros used to generate various ARM or Thumb opcodes.
#define ARMV5_BKPT(im)
Definition: arm_opcodes.h:227
#define ARMV4_5_STC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:159
#define ARMV5_T_BKPT(im)
Definition: arm_opcodes.h:313
#define ARMV4_5_LDC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:174
#define ARMV4_5_MRC(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:186
#define ARMV4_5_STRH_IP(rd, rn)
Definition: arm_opcodes.h:105
#define ARMV4_5_MCR(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:209
#define ARMV4_5_LDRH_IP(rd, rn)
Definition: arm_opcodes.h:87
#define ARMV4_5_LDRB_IP(rd, rn)
Definition: arm_opcodes.h:93
#define ARMV4_5_LDRW_IP(rd, rn)
Definition: arm_opcodes.h:81
#define ARMV4_5_STRW_IP(rd, rn)
Definition: arm_opcodes.h:99
#define ARMV4_5_STRB_IP(rd, rn)
Definition: arm_opcodes.h:111
int arm_semihosting(struct target *target, int *retval)
Checks for and processes an ARM semihosting request.
int arm_semihosting_init(struct target *target)
Initialize ARM semihosting support.
enum arm_mode mode
Definition: armv4_5.c:281
int armv7a_handle_cache_info_command(struct command_invocation *cmd, struct armv7a_cache_common *armv7a_cache)
Definition: armv7a.c:230
int armv7a_read_ttbcr(struct target *target)
Definition: armv7a.c:118
int armv7a_arch_state(struct target *target)
Definition: armv7a.c:531
const struct command_registration armv7a_command_handlers[]
Definition: armv7a.c:587
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a)
Definition: armv7a.c:515
int armv7a_identify_cache(struct target *target)
Definition: armv7a.c:364
#define CPUDBG_DSMCR
Definition: armv7a.h:164
#define CPUDBG_DSCCR
Definition: armv7a.h:163
#define CPUDBG_OSLAR
Definition: armv7a.h:157
#define CPUDBG_BCR_BASE
Definition: armv7a.h:151
#define CPUDBG_OSLSR
Definition: armv7a.h:158
#define CPUDBG_DSCR
Definition: armv7a.h:139
#define CPUDBG_DRCR
Definition: armv7a.h:140
#define CPUDBG_DIDR
Definition: armv7a.h:134
#define CPUDBG_WCR_BASE
Definition: armv7a.h:153
#define CPUDBG_DTRTX
Definition: armv7a.h:147
static struct armv7a_common * target_to_armv7a(struct target *target)
Definition: armv7a.h:120
#define CPUDBG_WVR_BASE
Definition: armv7a.h:152
#define CPUDBG_WFAR
Definition: armv7a.h:137
#define CPUDBG_BVR_BASE
Definition: armv7a.h:150
#define CPUDBG_DTRRX
Definition: armv7a.h:145
#define CPUDBG_PRSR
Definition: armv7a.h:142
#define CPUDBG_ITR
Definition: armv7a.h:146
#define CPUDBG_ID_PFR1
Definition: armv7a.h:170
int armv7a_l1_i_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:335
int armv7a_cache_flush_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:384
int armv7a_l1_d_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:146
const struct command_registration armv7a_mmu_command_handlers[]
Definition: armv7a_mmu.c:359
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va, target_addr_t *val, int meminfo)
Definition: armv7a_mmu.c:27
@ ARMV7M_PRIMASK
Definition: armv7m.h:145
@ ARMV7M_XPSR
Definition: armv7m.h:128
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word.
Definition: binarybuffer.h:104
static void buf_set_u32(uint8_t *_buffer, unsigned int first, unsigned int num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:34
struct breakpoint * breakpoint_find(struct target *target, target_addr_t address)
Definition: breakpoints.c:489
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
static void watchpoint_set(struct watchpoint *watchpoint, unsigned int number)
Definition: breakpoints.h:83
static void breakpoint_hw_set(struct breakpoint *breakpoint, unsigned int hw_number)
Definition: breakpoints.h:66
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:443
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:402
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:253
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
Definition: cortex_a.c:397
static int cortex_a_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2708
static int cortex_a_mmu(struct target *target, int *enabled)
Definition: cortex_a.c:3201
static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
Definition: cortex_a.c:3129
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
Definition: cortex_a.c:369
static int cortex_a_exec_opcode(struct target *target, uint32_t opcode, uint32_t *dscr_p)
Definition: cortex_a.c:283
static const struct command_registration cortex_a_command_handlers[]
Definition: cortex_a.c:3358
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
Definition: cortex_a.c:333
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar, uint32_t dfsr, uint32_t *dscr)
Definition: cortex_a.c:2093
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
Definition: cortex_a.c:633
static int cortex_a_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2813
static int cortex_a_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2779
static int cortex_a_init_debug_access(struct target *target)
Definition: cortex_a.c:208
static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove a watchpoint from an Cortex-A target.
Definition: cortex_a.c:1866
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
Definition: cortex_a.c:483
static const struct command_registration cortex_r4_exec_command_handlers[]
Definition: cortex_a.c:3423
static const struct command_registration cortex_a_exec_command_handlers[]
Definition: cortex_a.c:3319
static int cortex_a_read_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2394
static int cortex_a_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2728
static int cortex_a_resume(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution)
Definition: cortex_a.c:987
static int cortex_a_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
Definition: cortex_a.c:1171
static int cortex_a_read_copro(struct target *target, uint32_t opcode, uint32_t *data, uint32_t *dscr)
Definition: cortex_a.c:2006
static int cortex_a_instr_read_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Definition: cortex_a.c:551
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:494
static int cortex_a_restore_context(struct target *target, bool bpwp)
Definition: cortex_a.c:1263
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1662
static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
Definition: cortex_a.c:968
static int cortex_a_handle_target_request(void *priv)
Definition: cortex_a.c:2847
static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add a watchpoint to an Cortex-A target.
Definition: cortex_a.c:1841
static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
Sets a watchpoint for an Cortex-A target in one of the watchpoint units.
Definition: cortex_a.c:1694
static int cortex_a_init_arch_info(struct target *target, struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
Definition: cortex_a.c:3100
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:441
static int cortex_a_post_debug_entry(struct target *target)
Definition: cortex_a.c:1101
struct target_type cortexr4_target
Definition: cortex_a.c:3455
static int update_halt_gdb(struct target *target)
Definition: cortex_a.c:689
static int cortex_a_read_cpu_memory_fast(struct target *target, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2471
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1418
static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
Definition: cortex_a.c:3151
static int cortex_a_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1645
static int cortex_a_examine(struct target *target)
Definition: cortex_a.c:3074
static int cortex_a_write_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2136
static int cortex_a_halt_smp(struct target *target)
Definition: cortex_a.c:675
static int cortex_a_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1629
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1499
static int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
Definition: cortex_a.c:1148
static int cortex_a_deassert_reset(struct target *target)
Definition: cortex_a.c:1922
static int cortex_a_write_copro(struct target *target, uint32_t opcode, uint32_t data, uint32_t *dscr)
Definition: cortex_a.c:2060
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar, uint32_t *dfsr, uint32_t *dscr)
Definition: cortex_a.c:2040
static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
Unset an existing watchpoint and clear the used watchpoint unit.
Definition: cortex_a.c:1796
static int cortex_a_internal_restore(struct target *target, int current, target_addr_t *address, int handle_breakpoints, int debug_execution)
Definition: cortex_a.c:820
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
Definition: cortex_a.c:1955
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t, uint32_t addr, uint32_t control)
Definition: cortex_a.c:574
static int cortex_a_mmu_modify(struct target *target, int enable)
Definition: cortex_a.c:168
static int cortex_a_virt2phys(struct target *target, target_addr_t virt, target_addr_t *phys)
Definition: cortex_a.c:3218
static int cortex_a_examine_first(struct target *target)
Definition: cortex_a.c:2888
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:532
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
Definition: cortex_a.c:255
static int cortex_a_init_target(struct command_context *cmd_ctx, struct target *target)
Definition: cortex_a.c:3092
static int cortex_a_poll(struct target *target)
Definition: cortex_a.c:735
static void cortex_a_deinit_target(struct target *target)
Definition: cortex_a.c:3171
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
Definition: cortex_a.c:609
static int cortex_a_restore_cp15_control_reg(struct target *target)
Definition: cortex_a.c:90
static const struct command_registration cortex_r4_command_handlers[]
Definition: cortex_a.c:3441
static int cortex_a_post_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:142
static int cortex_a_write_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2241
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
Definition: cortex_a.c:3244
static int cortex_a_set_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1280
static int cortex_a_halt(struct target *target)
Definition: cortex_a.c:792
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:403
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data, uint32_t *dscr_p)
Definition: cortex_a.c:340
static int cortex_a_write_cpu_memory_fast(struct target *target, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2212
static int cortex_a_set_context_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1369
static int cortex_a_prep_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:112
static int cortex_a_read_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2558
static int cortex_a_internal_restart(struct target *target)
Definition: cortex_a.c:918
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
Definition: cortex_a.c:2109
static int cortex_a_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1613
static int cortex_a_instr_write_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Definition: cortex_a.c:461
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t data)
Definition: cortex_a.c:420
static int cortex_a_debug_entry(struct target *target)
Definition: cortex_a.c:1022
static int cortex_a_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2764
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t *data)
Definition: cortex_a.c:512
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask, uint32_t value, uint32_t *dscr)
Definition: cortex_a.c:1977
static struct cortex_a_common * dpm_to_a(struct arm_dpm *dpm)
Definition: cortex_a.c:328
static int cortex_a_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2744
static int cortex_a_assert_reset(struct target *target)
Definition: cortex_a.c:1882
struct target_type cortexa_target
Definition: cortex_a.c:3375
static struct target * get_cortex_a(struct target *target, int32_t coreid)
Definition: cortex_a.c:662
static unsigned int ilog2(unsigned int x)
Definition: cortex_a.c:78
static struct cortex_a_common * target_to_cortex_a(struct target *target)
Definition: cortex_a.h:104
@ CORTEX_A_ISRMASK_OFF
Definition: cortex_a.h:45
@ CORTEX_A_ISRMASK_ON
Definition: cortex_a.h:46
@ CORTEX_A_DACRFIXUP_ON
Definition: cortex_a.h:51
@ CORTEX_A_DACRFIXUP_OFF
Definition: cortex_a.h:50
#define CORTEX_A_COMMON_MAGIC
Definition: cortex_a.h:22
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
int mask
Definition: esirisc.c:1739
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
bool transport_is_jtag(void)
Returns true if the current debug session is using JTAG as its transport.
Definition: jtag/core.c:1840
int adapter_deassert_reset(void)
Definition: jtag/core.c:1912
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1747
int adapter_assert_reset(void)
Definition: jtag/core.c:1892
@ RESET_SRST_NO_GATING
Definition: jtag.h:224
@ RESET_HAS_SRST
Definition: jtag.h:218
#define LOG_WARNING(expr ...)
Definition: log.h:129
#define ERROR_FAIL
Definition: log.h:173
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:161
#define LOG_TARGET_DEBUG(target, fmt_str,...)
Definition: log.h:149
#define LOG_ERROR(expr ...)
Definition: log.h:132
#define LOG_INFO(expr ...)
Definition: log.h:126
#define LOG_DEBUG(expr ...)
Definition: log.h:109
#define ERROR_OK
Definition: log.h:167
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
void register_cache_invalidate(struct reg_cache *cache)
Marks the contents of the register cache as invalid (and clean).
Definition: register.c:94
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
const struct command_registration smp_command_handlers[]
Definition: smp.c:153
#define foreach_smp_target(pos, head)
Definition: smp.h:15
#define BIT(nr)
Definition: stm32l4x.h:18
uint64_t ap_num
ADIv5: Number of this AP (0~255) ADIv6: Base address of this AP (4k aligned) TODO: to be more coheren...
Definition: arm_adi_v5.h:261
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:254
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:306
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:348
uint64_t apsel
Definition: arm_adi_v5.h:367
struct adiv5_dap * dap
Definition: arm_adi_v5.h:787
This wraps an implementation of DPM primitives.
Definition: arm_dpm.h:47
int(* instr_read_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from dcc after execution.
Definition: arm_dpm.h:91
uint64_t didr
Cache of DIDR.
Definition: arm_dpm.h:51
int(* instr_write_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to R0 before execution.
Definition: arm_dpm.h:72
struct arm * arm
Definition: arm_dpm.h:48
int(* bpwp_enable)(struct arm_dpm *dpm, unsigned int index_value, uint32_t addr, uint32_t control)
Enables one breakpoint or watchpoint by writing to the hardware registers.
Definition: arm_dpm.h:122
int(* finish)(struct arm_dpm *dpm)
Invoke after a series of instruction operations.
Definition: arm_dpm.h:57
struct dpm_bp * dbp
Definition: arm_dpm.h:139
int(* instr_write_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to DCC before execution.
Definition: arm_dpm.h:65
int(* prepare)(struct arm_dpm *dpm)
Invoke before a series of instruction operations.
Definition: arm_dpm.h:54
int(* instr_read_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from r0 after execution.
Definition: arm_dpm.h:98
int(* instr_read_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Runs two instructions, reading data from r0 and r1 after execution.
Definition: arm_dpm.h:105
struct dpm_wp * dwp
Definition: arm_dpm.h:140
int(* bpwp_disable)(struct arm_dpm *dpm, unsigned int index_value)
Disables one breakpoint or watchpoint by clearing its hardware control registers.
Definition: arm_dpm.h:130
int(* instr_cpsr_sync)(struct arm_dpm *dpm)
Optional core-specific operation invoked after CPSR writes.
Definition: arm_dpm.h:86
int(* instr_write_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Runs two instructions, writing data to R0 and R1 before execution.
Definition: arm_dpm.h:78
uint32_t dscr
Recent value of DSCR.
Definition: arm_dpm.h:150
Represents a generic ARM core, with standard application registers.
Definition: arm.h:175
enum arm_core_type core_type
Indicates what registers are in the ARM state core register set.
Definition: arm.h:193
int(* mrc)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value)
Read coprocessor register.
Definition: arm.h:230
enum arm_mode core_mode
Record the current core mode: SVC, USR, or some other mode.
Definition: arm.h:196
struct adiv5_dap * dap
For targets conforming to ARM Debug Interface v5, this handle references the Debug Access Port (DAP) ...
Definition: arm.h:257
struct reg * pc
Handle to the PC; valid in all core modes.
Definition: arm.h:181
struct reg_cache * core_cache
Definition: arm.h:178
int(* mcr)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value)
Write coprocessor register.
Definition: arm.h:241
struct reg * spsr
Handle to the SPSR; valid only in core modes with an SPSR.
Definition: arm.h:187
int arm_vfp_version
Floating point or VFP version, 0 if disabled.
Definition: arm.h:205
struct target * target
Backpointer to the target.
Definition: arm.h:210
enum arm_state core_state
Record the current core state: ARM, Thumb, or otherwise.
Definition: arm.h:199
int d_u_cache_enabled
Definition: armv7a.h:67
bool is_armv7r
Definition: armv7a.h:103
int(* post_debug_entry)(struct target *target)
Definition: armv7a.h:114
int(* examine_debug_reason)(struct target *target)
Definition: armv7a.h:113
target_addr_t debug_base
Definition: armv7a.h:95
struct arm arm
Definition: armv7a.h:90
struct armv7a_mmu_common armv7a_mmu
Definition: armv7a.h:111
struct arm_dpm dpm
Definition: armv7a.h:94
struct adiv5_ap * debug_ap
Definition: armv7a.h:96
void(* pre_restore_context)(struct target *target)
Definition: armv7a.h:116
struct armv7a_cache_common armv7a_cache
Definition: armv7a.h:83
int(* read_physical_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: armv7a.h:81
uint32_t mmu_enabled
Definition: armv7a.h:84
int linked_brp
Definition: breakpoints.h:36
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
bool is_set
Definition: breakpoints.h:31
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
const char * name
Definition: command.h:235
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:249
uint32_t value
Definition: cortex_a.h:57
uint32_t control
Definition: cortex_a.h:58
bool used
Definition: cortex_a.h:55
uint8_t brpn
Definition: cortex_a.h:59
struct armv7a_common armv7a_common
Definition: cortex_a.h:72
struct cortex_a_wrp * wrp_list
Definition: cortex_a.h:94
uint32_t didr
Definition: cortex_a.h:97
int brp_num_context
Definition: cortex_a.h:88
struct cortex_a_brp * brp_list
Definition: cortex_a.h:91
uint32_t cp15_control_reg_curr
Definition: cortex_a.h:80
enum cortex_a_dacrfixup_mode dacrfixup_mode
Definition: cortex_a.h:100
int wrp_num_available
Definition: cortex_a.h:93
uint32_t cpudbg_dscr
Definition: cortex_a.h:75
uint32_t cp15_dacr_reg
Definition: cortex_a.h:84
unsigned int common_magic
Definition: cortex_a.h:70
enum cortex_a_isrmasking_mode isrmasking_mode
Definition: cortex_a.h:99
uint32_t cpuid
Definition: cortex_a.h:96
enum arm_mode curr_mode
Definition: cortex_a.h:85
uint32_t cp15_control_reg
Definition: cortex_a.h:78
int brp_num_available
Definition: cortex_a.h:90
uint8_t wrpn
Definition: cortex_a.h:66
bool used
Definition: cortex_a.h:63
uint32_t value
Definition: cortex_a.h:64
uint32_t control
Definition: cortex_a.h:65
int32_t core[2]
Definition: target.h:100
struct target * target
Definition: target.h:95
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
Definition: register.h:111
bool valid
Definition: register.h:126
uint8_t * value
Definition: register.h:122
bool dirty
Definition: register.h:124
struct target * target
Definition: target.h:214
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
const char * name
Name of this type of target.
Definition: target_type.h:31
Definition: target.h:116
int32_t coreid
Definition: target.h:120
struct gdb_service * gdb_service
Definition: target.h:199
bool dbgbase_set
Definition: target.h:174
bool dbg_msg_enabled
Definition: target.h:163
enum target_debug_reason debug_reason
Definition: target.h:154
enum target_state state
Definition: target.h:157
uint32_t dbgbase
Definition: target.h:175
void * private_config
Definition: target.h:165
struct list_head * smp_targets
Definition: target.h:188
unsigned int smp
Definition: target.h:187
bool reset_halt
Definition: target.h:144
char * cmd_name
Definition: target.h:118
bool is_set
Definition: breakpoints.h:47
unsigned int length
Definition: breakpoints.h:43
unsigned int number
Definition: breakpoints.h:48
target_addr_t address
Definition: breakpoints.h:42
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1764
void target_free_all_working_areas(struct target *target)
Definition: target.c:2150
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:370
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:352
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1265
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1658
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:334
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1237
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4860
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:458
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4667
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:316
@ DBG_REASON_NOTHALTED
Definition: target.h:74
@ DBG_REASON_DBGRQ
Definition: target.h:69
@ DBG_REASON_SINGLESTEP
Definition: target.h:73
@ DBG_REASON_WATCHPOINT
Definition: target.h:71
@ DBG_REASON_BREAKPOINT
Definition: target.h:70
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:790
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:788
static bool target_was_examined(const struct target *target)
Definition: target.h:436
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:792
#define ERROR_TARGET_INVALID
Definition: target.h:787
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:327
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:272
@ TARGET_EVENT_HALTED
Definition: target.h:252
@ TARGET_EVENT_RESUMED
Definition: target.h:253
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:271
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:264
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:233
target_state
Definition: target.h:53
@ TARGET_RESET
Definition: target.h:57
@ TARGET_DEBUG_RUNNING
Definition: target.h:58
@ TARGET_UNKNOWN
Definition: target.h:54
@ TARGET_HALTED
Definition: target.h:56
@ TARGET_RUNNING
Definition: target.h:55
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:794
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:443
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:793
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:795
int target_request(struct target *target, uint32_t request)
int64_t timeval_ms(void)
#define TARGET_ADDR_FMT
Definition: types.h:342
uint64_t target_addr_t
Definition: types.h:335
#define container_of(ptr, type, member)
Cast a member of a structure out to the containing structure.
Definition: types.h:68
#define NULL
Definition: usb.h:16
uint8_t status[4]
Definition: vdebug.c:17
uint8_t dummy[96]
Definition: vdebug.c:23
uint8_t count[4]
Definition: vdebug.c:22