OpenOCD
zy1000.c
Go to the documentation of this file.
1 /***************************************************************************
2  * Copyright (C) 2007-2010 by Øyvind Harboe *
3  * *
4  * This program is free software; you can redistribute it and/or modify *
5  * it under the terms of the GNU General Public License as published by *
6  * the Free Software Foundation; either version 2 of the License, or *
7  * (at your option) any later version. *
8  * *
9  * This program is distributed in the hope that it will be useful, *
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12  * GNU General Public License for more details. *
13  * *
14  * You should have received a copy of the GNU General Public License *
15  * along with this program. If not, see <http://www.gnu.org/licenses/>. *
16  ***************************************************************************/
17 
18 /* This file supports the zy1000 debugger:
19  *
20  * http://www.ultsol.com/index.php/component/content/article/8/33-zylin-zy1000-jtag-probe
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47 
48 #include <pthread.h>
49 
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
55 
56 #include <netinet/tcp.h>
57 
58 /* Assume we're connecting to a revc w/60MHz clock. */
59 #define ZYLIN_KHZ 60000
60 
61 /* The software needs to check if it's in RCLK mode or not */
62 static bool zy1000_rclk;
63 
64 static int zy1000_khz(int khz, int *jtag_speed)
65 {
66  if (khz == 0)
67  *jtag_speed = 0;
68  else {
69  int speed;
70  /* Round speed up to nearest divisor.
71  *
72  * E.g. 16000kHz
73  * (64000 + 15999) / 16000 = 4
74  * (4 + 1) / 2 = 2
75  * 2 * 2 = 4
76  *
77  * 64000 / 4 = 16000
78  *
79  * E.g. 15999
80  * (64000 + 15998) / 15999 = 5
81  * (5 + 1) / 2 = 3
82  * 3 * 2 = 6
83  *
84  * 64000 / 6 = 10666
85  *
86  */
87  speed = (ZYLIN_KHZ + (khz - 1)) / khz;
88  speed = (speed + 1) / 2;
89  speed *= 2;
90  if (speed > 8190) {
91  /* maximum dividend */
92  speed = 8190;
93  }
94  *jtag_speed = speed;
95  }
96  return ERROR_OK;
97 }
98 
99 static int zy1000_speed_div(int speed, int *khz)
100 {
101  if (speed == 0)
102  *khz = 0;
103  else
104  *khz = ZYLIN_KHZ / speed;
105 
106  return ERROR_OK;
107 }
108 
109 static bool readPowerDropout(void)
110 {
111  uint32_t state;
112  /* sample and clear power dropout */
113  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
114  ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
115  bool powerDropout;
116  powerDropout = (state & 0x80) != 0;
117  return powerDropout;
118 }
119 
120 
121 static bool readSRST(void)
122 {
123  uint32_t state;
124  /* sample and clear SRST sensing */
125  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
126  ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
127  bool srstAsserted;
128  srstAsserted = (state & 0x40) != 0;
129  return srstAsserted;
130 }
131 
132 static int zy1000_srst_asserted(int *srst_asserted)
133 {
134  *srst_asserted = readSRST();
135  return ERROR_OK;
136 }
137 
138 static int zy1000_power_dropout(int *dropout)
139 {
140  *dropout = readPowerDropout();
141  return ERROR_OK;
142 }
143 
144 /* Wait for SRST to assert or deassert */
145 static void waitSRST(bool asserted)
146 {
147  bool first = true;
148  int64_t start = 0;
149  int64_t total = 0;
150  const char *mode = asserted ? "assert" : "deassert";
151 
152  for (;; ) {
153  bool srstAsserted = readSRST();
154  if ((asserted && srstAsserted) || (!asserted && !srstAsserted)) {
155  if (total > 1)
156  LOG_USER("SRST took %dms to %s", (int)total, mode);
157  break;
158  }
159 
160  if (first) {
161  first = false;
162  start = timeval_ms();
163  }
164 
165  total = timeval_ms() - start;
166 
167  keep_alive();
168 
169  if (total > 5000) {
170  LOG_ERROR("SRST took too long to %s: %" PRId64 "ms", mode, total);
171  break;
172  }
173  }
174 }
175 
176 void zy1000_reset(int trst, int srst)
177 {
178  LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
179 
180  /* flush the JTAG FIFO. Not flushing the queue before messing with
181  * reset has such interesting bugs as causing hard to reproduce
182  * RCLK bugs as RCLK will stop responding when TRST is asserted
183  */
184  waitIdle();
185 
186  if (!srst)
187  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
188  else {
189  /* Danger!!! if clk != 0 when in
190  * idle in TAP_IDLE, reset halt on str912 will fail.
191  */
192  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
193 
194  waitSRST(true);
195  }
196 
197  if (!trst)
198  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
199  else {
200  /* assert reset */
201  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
202  }
203 
204  if (trst || (srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST))) {
205  /* we're now in the RESET state until trst is deasserted */
207  } else {
208  /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
209  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
210  }
211 
212  /* wait for srst to float back up */
213  if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0)) ||
214  (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
215  waitSRST(false);
216 }
217 
218 int zy1000_speed(int speed)
219 {
220  /* flush JTAG master FIFO before setting speed */
221  waitIdle();
222 
223  zy1000_rclk = false;
224 
225  if (speed == 0) {
226  /*0 means RCLK*/
227  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
228  zy1000_rclk = true;
229  LOG_DEBUG("jtag_speed using RCLK");
230  } else {
231  if (speed > 8190 || speed < 2) {
232  LOG_USER(
233  "valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
234  ZYLIN_KHZ,
235  (ZYLIN_KHZ * 1000) / 8190,
236  ZYLIN_KHZ / (2 * 1000));
238  }
239 
240  int khz;
241  speed &= ~1;
242  zy1000_speed_div(speed, &khz);
243  LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
244  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
245  ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
246  }
247  return ERROR_OK;
248 }
249 
250 static bool savePower;
251 
252 static void setPower(bool power)
253 {
254  savePower = power;
255  if (power)
256  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
257  else
258  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
259 }
260 
261 COMMAND_HANDLER(handle_power_command)
262 {
263  switch (CMD_ARGC) {
264  case 1: {
265  bool enable;
266  COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
267  setPower(enable);
268  }
269  /* fall through */
270  case 0:
271  LOG_INFO("Target power %s", savePower ? "on" : "off");
272  break;
273  default:
275  }
276 
277  return ERROR_OK;
278 }
279 
280 #if !BUILD_ZY1000_MASTER
281 static char *tcp_server = "notspecified";
282 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
283 {
284  if (argc != 2)
285  return JIM_ERR;
286 
287  tcp_server = strdup(Jim_GetString(argv[1], NULL));
288 
289  return JIM_OK;
290 }
291 #endif
292 
293 static int zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
294  int argc,
295  Jim_Obj * const *argv)
296 {
297  if (argc != 1) {
298  Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
299  return JIM_ERR;
300  }
301 
302  bool dropout = readPowerDropout();
303 
304  Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
305 
306  return JIM_OK;
307 }
308 
309 int zy1000_quit(void)
310 {
311 
312  return ERROR_OK;
313 }
314 
316 {
317  uint32_t empty;
318 
319  waitIdle();
320 
321  /* We must make sure to write data read back to memory location before we return
322  * from this fn
323  */
325 
326  /* and handle any callbacks... */
328 
329  if (zy1000_rclk) {
330  /* Only check for errors when using RCLK to speed up
331  * jtag over TCP/IP
332  */
333  ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
334  /* clear JTAG error register */
335  ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
336 
337  if ((empty&0x400) != 0) {
338  LOG_WARNING("RCLK timeout");
339  /* the error is informative only as we don't want to break the firmware if there
340  * is a false positive.
341  */
342  /* return ERROR_FAIL; */
343  }
344  }
345  return ERROR_OK;
346 }
347 
348 static void writeShiftValue(uint8_t *data, int bits);
349 
350 /* here we shuffle N bits out/in */
351 static inline void scanBits(const uint8_t *out_value,
352  uint8_t *in_value,
353  int num_bits,
354  bool pause_now,
355  tap_state_t shiftState,
356  tap_state_t end_state)
357 {
358  tap_state_t pause_state = shiftState;
359  for (int j = 0; j < num_bits; j += 32) {
360  int k = num_bits - j;
361  if (k > 32) {
362  k = 32;
363  /* we have more to shift out */
364  } else if (pause_now) {
365  /* this was the last to shift out this time */
366  pause_state = end_state;
367  }
368 
369  /* we have (num_bits + 7)/8 bytes of bits to toggle out. */
370  /* bits are pushed out LSB to MSB */
371  uint32_t value;
372  value = 0;
373  if (out_value != NULL) {
374  for (int l = 0; l < k; l += 8)
375  value |= out_value[(j + l)/8]<<l;
376  }
377  /* mask away unused bits for easier debugging */
378  if (k < 32)
379  value &= ~(((uint32_t)0xffffffff) << k);
380  else {
381  /* Shifting by >= 32 is not defined by the C standard
382  * and will in fact shift by &0x1f bits on nios */
383  }
384 
385  shiftValueInner(shiftState, pause_state, k, value);
386 
387  if (in_value != NULL)
388  writeShiftValue(in_value + (j/8), k);
389  }
390 }
391 
392 static inline void scanFields(int num_fields,
393  const struct scan_field *fields,
394  tap_state_t shiftState,
395  tap_state_t end_state)
396 {
397  for (int i = 0; i < num_fields; i++) {
398  scanBits(fields[i].out_value,
399  fields[i].in_value,
400  fields[i].num_bits,
401  (i == num_fields-1),
402  shiftState,
403  end_state);
404  }
405 }
406 
408  const struct scan_field *fields,
409  tap_state_t state)
410 {
411  int scan_size = 0;
412  struct jtag_tap *tap, *nextTap;
413  tap_state_t pause_state = TAP_IRSHIFT;
414 
415  for (tap = jtag_tap_next_enabled(NULL); tap != NULL; tap = nextTap) {
416  nextTap = jtag_tap_next_enabled(tap);
417  if (nextTap == NULL)
418  pause_state = state;
419  scan_size = tap->ir_length;
420 
421  /* search the list */
422  if (tap == active) {
423  scanFields(1, fields, TAP_IRSHIFT, pause_state);
424  /* update device information */
425  buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
426 
427  tap->bypass = 0;
428  } else {
429  /* if a device isn't listed, set it to BYPASS */
430  assert(scan_size <= 32);
431  shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
432 
433  /* Optimization code will check what the cur_instr is set to, so
434  * we must set it to bypass value.
435  */
436  buf_set_ones(tap->cur_instr, tap->ir_length);
437 
438  tap->bypass = 1;
439  }
440  }
441 
442  return ERROR_OK;
443 }
444 
446  const uint8_t *out_bits,
447  uint8_t *in_bits,
448  tap_state_t state)
449 {
450  scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
451  return ERROR_OK;
452 }
453 
455  int num_fields,
456  const struct scan_field *fields,
457  tap_state_t state)
458 {
459  struct jtag_tap *tap, *nextTap;
460  tap_state_t pause_state = TAP_DRSHIFT;
461  for (tap = jtag_tap_next_enabled(NULL); tap != NULL; tap = nextTap) {
462  nextTap = jtag_tap_next_enabled(tap);
463  if (nextTap == NULL)
464  pause_state = state;
465 
466  /* Find a range of fields to write to this tap */
467  if (tap == active) {
468  assert(!tap->bypass);
469 
470  scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
471  } else {
472  /* Shift out a 0 for disabled tap's */
473  assert(tap->bypass);
474  shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
475  }
476  }
477  return ERROR_OK;
478 }
479 
481  const uint8_t *out_bits,
482  uint8_t *in_bits,
483  tap_state_t state)
484 {
485  scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
486  return ERROR_OK;
487 }
488 
490 {
492  return ERROR_OK;
493 }
494 
495 int interface_jtag_add_reset(int req_trst, int req_srst)
496 {
497  zy1000_reset(req_trst, req_srst);
498  return ERROR_OK;
499 }
500 
501 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
502 {
503  /* num_cycles can be 0 */
504  setCurrentState(clockstate);
505 
506  /* execute num_cycles, 32 at the time. */
507  int i;
508  for (i = 0; i < num_cycles; i += 32) {
509  int num;
510  num = 32;
511  if (num_cycles-i < num)
512  num = num_cycles-i;
513  shiftValueInner(clockstate, clockstate, num, 0);
514  }
515 
516 #if !TEST_MANUAL()
517  /* finish in end_state */
518  setCurrentState(state);
519 #else
520  tap_state_t t = TAP_IDLE;
521  /* test manual drive code on any target */
522  int tms;
523  uint8_t tms_scan = tap_get_tms_path(t, state);
525 
526  for (i = 0; i < tms_count; i++) {
527  tms = (tms_scan >> i) & 1;
528  waitIdle();
529  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
530  }
531  waitIdle();
532  ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
533 #endif
534 
535  return ERROR_OK;
536 }
537 
538 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
539 {
540  return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
541 }
542 
543 int interface_jtag_add_clocks(int num_cycles)
544 {
546 }
547 
548 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
549 {
550  /*wait for the fifo to be empty*/
551  waitIdle();
552 
553  for (unsigned i = 0; i < num_bits; i++) {
554  int tms;
555 
556  if (((seq[i/8] >> (i % 8)) & 1) == 0)
557  tms = 0;
558  else
559  tms = 1;
560 
561  waitIdle();
562  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
563  }
564 
565  waitIdle();
566  if (state != TAP_INVALID)
567  ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
568  else {
569  /* this would be normal if
570  * we are switching to SWD mode */
571  }
572  return ERROR_OK;
573 }
574 
575 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
576 {
577  int state_count;
578  int tms = 0;
579 
580  state_count = 0;
581 
582  tap_state_t cur_state = cmd_queue_cur_state;
583 
584  uint8_t seq[16];
585  memset(seq, 0, sizeof(seq));
586  assert(num_states < (int)((sizeof(seq) * 8)));
587 
588  while (num_states) {
589  if (tap_state_transition(cur_state, false) == path[state_count])
590  tms = 0;
591  else if (tap_state_transition(cur_state, true) == path[state_count])
592  tms = 1;
593  else {
594  LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition",
595  tap_state_name(cur_state), tap_state_name(path[state_count]));
596  exit(-1);
597  }
598 
599  seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
600 
601  cur_state = path[state_count];
602  state_count++;
603  num_states--;
604  }
605 
606  return interface_add_tms_seq(state_count, seq, cur_state);
607 }
608 
609 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
610 {
611  /* bypass bits before and after */
612  int pre_bits = 0;
613  int post_bits = 0;
614 
615  bool found = false;
616  struct jtag_tap *cur_tap, *nextTap;
617  for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap != NULL; cur_tap = nextTap) {
618  nextTap = jtag_tap_next_enabled(cur_tap);
619  if (cur_tap == tap)
620  found = true;
621  else {
622  if (found)
623  post_bits++;
624  else
625  pre_bits++;
626  }
627  }
628  *pre = pre_bits;
629  *post = post_bits;
630 }
631 
633  int reg_addr,
634  const uint8_t *buffer,
635  int little,
636  int count)
637 {
638 #if 0
639  int i;
640  for (i = 0; i < count; i++) {
642  little));
643  buffer += 4;
644  }
645 #else
646  int pre_bits;
647  int post_bits;
648  jtag_pre_post_bits(tap, &pre_bits, &post_bits);
649 
650  if ((pre_bits > 32) || (post_bits + 6 > 32)) {
651  int i;
652  for (i = 0; i < count; i++) {
653  embeddedice_write_reg_inner(tap, reg_addr,
654  fast_target_buffer_get_u32(buffer, little));
655  buffer += 4;
656  }
657  } else {
658  int i;
659  for (i = 0; i < count; i++) {
660  /* Fewer pokes means we get to use the FIFO more efficiently */
661  shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
663  fast_target_buffer_get_u32(buffer, little));
664  /* Danger! here we need to exit into the TAP_IDLE state to make
665  * DCC pick up this value.
666  */
667  shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits,
668  (reg_addr | (1 << 5)));
669  buffer += 4;
670  }
671  }
672 #endif
673 }
674 
676  uint32_t opcode,
677  uint32_t *data,
678  size_t count)
679 {
680  /* bypass bits before and after */
681  int pre_bits;
682  int post_bits;
683  jtag_pre_post_bits(tap, &pre_bits, &post_bits);
684  post_bits += 2;
685 
686  if ((pre_bits > 32) || (post_bits > 32)) {
688  uint32_t opcode, uint32_t *data, size_t count);
689  return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
690  } else {
691  static const uint8_t zero;
692 
693  /* FIX!!!!!! the target_write_memory() API started this nasty problem
694  * with unaligned uint32_t * pointers... */
695  const uint8_t *t = (const uint8_t *)data;
696 
697  while (--count > 0) {
698 #if 1
699  /* Danger! This code doesn't update cmd_queue_cur_state, so
700  * invoking jtag_add_pathmove() before jtag_add_dr_scan() after
701  * this loop would fail!
702  */
703  shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
704 
705  uint32_t value;
706  value = *t++;
707  value |= (*t++<<8);
708  value |= (*t++<<16);
709  value |= (*t++<<24);
710 
712  /* minimum 2 bits */
713  shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
714 
715  /* copy & paste from arm11_dbgtap.c */
716  /* TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT,
717  * TAP_DRCAPTURE, TAP_DRSHIFT */
718  /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
719  * This is probably a bug in the Avalon bus(cross clocking bridge?)
720  * or in the jtag registers module.
721  */
722  waitIdle();
723  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
724  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
725  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
726  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
727  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
728  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
729  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
730  ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
731  /* we don't have to wait for the queue to empty here */
733  waitIdle();
734 #else
738  };
739 
740  struct scan_field fields[2] = {
741  { .num_bits = 32, .out_value = t },
742  { .num_bits = 2, .out_value = &zero },
743  };
744  t += 4;
745 
746  jtag_add_dr_scan(tap,
747  2,
748  fields,
749  TAP_IDLE);
750 
751  jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
752  arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
753 #endif
754  }
755 
756  struct scan_field fields[2] = {
757  { .num_bits = 32, .out_value = t },
758  { .num_bits = 2, .out_value = &zero },
759  };
760 
761  /* This will happen on the last iteration updating cmd_queue_cur_state
762  * so we don't have to track it during the common code path
763  */
764  jtag_add_dr_scan(tap,
765  2,
766  fields,
767  TAP_IDLE);
768 
769  return jtag_execute_queue();
770  }
771 }
772 
773 static const struct command_registration zy1000_commands[] = {
774  {
775  .name = "power",
776  .handler = handle_power_command,
777  .mode = COMMAND_ANY,
778  .help = "Turn power switch to target on/off. "
779  "With no arguments, prints status.",
780  .usage = "('on'|'off)",
781  },
782 #if !BUILD_ZY1000_MASTER
783  {
784  .name = "zy1000_server",
785  .mode = COMMAND_ANY,
786  .jim_handler = jim_zy1000_server,
787  .help = "Tcpip address for ZY1000 server.",
788  .usage = "address",
789  },
790 #endif
791  {
792  .name = "powerstatus",
793  .mode = COMMAND_ANY,
794  .jim_handler = zylinjtag_Jim_Command_powerstatus,
795  .help = "Returns power status of target",
796  },
798 };
799 
800 #if !BUILD_ZY1000_MASTER
801 
802 static int tcp_ip = -1;
803 
804 /* Write large packets if we can */
805 static size_t out_pos;
806 static uint8_t out_buffer[16384];
807 static size_t in_pos;
808 static size_t in_write;
809 static uint8_t in_buffer[16384];
810 
811 static bool flush_writes(void)
812 {
813  bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
814  out_pos = 0;
815  return ok;
816 }
817 
818 static bool writeLong(uint32_t l)
819 {
820  int i;
821  for (i = 0; i < 4; i++) {
822  uint8_t c = (l >> (i*8))&0xff;
823  out_buffer[out_pos++] = c;
824  if (out_pos >= sizeof(out_buffer)) {
825  if (!flush_writes())
826  return false;
827  }
828  }
829  return true;
830 }
831 
832 static bool readLong(uint32_t *out_data)
833 {
834  uint32_t data = 0;
835  int i;
836  for (i = 0; i < 4; i++) {
837  uint8_t c;
838  if (in_pos == in_write) {
839  /* If we have some data that we can send, send them before
840  * we wait for more data
841  */
842  if (out_pos > 0) {
843  if (!flush_writes())
844  return false;
845  }
846 
847  /* read more */
848  int t;
849  t = read(tcp_ip, in_buffer, sizeof(in_buffer));
850  if (t < 1)
851  return false;
852  in_write = (size_t) t;
853  in_pos = 0;
854  }
855  c = in_buffer[in_pos++];
856 
857  data |= (c << (i*8));
858  }
859  *out_data = data;
860  return true;
861 }
862 
868 };
869 
870 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
871 #include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
872 
873 /* We initialize this late since we need to know the server address
874  * first.
875  */
876 static void tcpip_open(void)
877 {
878  if (tcp_ip >= 0)
879  return;
880 
881  struct sockaddr_in echoServAddr;/* Echo server address */
882 
883  /* Create a reliable, stream socket using TCP */
884  tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
885  if (tcp_ip < 0) {
886  fprintf(stderr, "Failed to connect to zy1000 server\n");
887  exit(-1);
888  }
889 
890  /* Construct the server address structure */
891  memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
892  echoServAddr.sin_family = AF_INET; /* Internet address family */
893  echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
894  echoServAddr.sin_port = htons(7777); /* Server port */
895 
896  /* Establish the connection to the echo server */
897  if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0) {
898  fprintf(stderr, "Failed to connect to zy1000 server\n");
899  exit(-1);
900  }
901 
902  int flag = 1;
903  setsockopt(tcp_ip, /* socket affected */
904  IPPROTO_TCP, /* set option at TCP level */
905  TCP_NODELAY, /* name of option */
906  (char *)&flag, /* the cast is historical cruft */
907  sizeof(int)); /* length of option value */
908 
909 }
910 
911 /* send a poke */
912 void zy1000_tcpout(uint32_t address, uint32_t data)
913 {
914  tcpip_open();
915  if (!writeLong((ZY1000_CMD_POKE << 24) | address) || !writeLong(data)) {
916  fprintf(stderr, "Could not write to zy1000 server\n");
917  exit(-1);
918  }
919 }
920 
921 /* By sending the wait to the server, we avoid a readback
922  * of status. Radically improves performance for this operation
923  * with long ping times.
924  */
925 void waitIdle(void)
926 {
927  tcpip_open();
928  if (!writeLong((ZY1000_CMD_WAITIDLE << 24))) {
929  fprintf(stderr, "Could not write to zy1000 server\n");
930  exit(-1);
931  }
932 }
933 
934 uint32_t zy1000_tcpin(uint32_t address)
935 {
936  tcpip_open();
937 
939 
940  uint32_t data;
941  if (!writeLong((ZY1000_CMD_PEEK << 24) | address) || !readLong(&data)) {
942  fprintf(stderr, "Could not read from zy1000 server\n");
943  exit(-1);
944  }
945  return data;
946 }
947 
948 int interface_jtag_add_sleep(uint32_t us)
949 {
950  tcpip_open();
951  if (!writeLong((ZY1000_CMD_SLEEP << 24)) || !writeLong(us)) {
952  fprintf(stderr, "Could not read from zy1000 server\n");
953  exit(-1);
954  }
955  return ERROR_OK;
956 }
957 
958 /* queue a readback */
959 #define readqueue_size 16384
960 static struct {
961  uint8_t *dest;
962  int bits;
964 
965 static int readqueue_pos;
966 
967 /* flush the readqueue, this means reading any data that
968  * we're expecting and store them into the final position
969  */
971 {
972  if (readqueue_pos == 0) {
973  /* simply debugging by allowing easy breakpoints when there
974  * is something to do. */
975  return;
976  }
977  int i;
978  tcpip_open();
979  for (i = 0; i < readqueue_pos; i++) {
980  uint32_t value;
981  if (!readLong(&value)) {
982  fprintf(stderr, "Could not read from zy1000 server\n");
983  exit(-1);
984  }
985 
986  uint8_t *in_value = readqueue[i].dest;
987  int k = readqueue[i].bits;
988 
989  /* we're shifting in data to MSB, shift data to be aligned for returning the value */
990  value >>= 32-k;
991 
992  for (int l = 0; l < k; l += 8)
993  in_value[l/8] = (value >> l)&0xff;
994  }
995  readqueue_pos = 0;
996 }
997 
998 /* By queuing the callback's we avoid flushing the
999  * read queue until jtag_execute_queue(). This can
1000  * reduce latency dramatically for cases where
1001  * callbacks are used extensively.
1002 */
1003 #define callbackqueue_size 128
1004 static struct callbackentry {
1011 
1013 
1015  jtag_callback_data_t data0,
1016  jtag_callback_data_t data1,
1017  jtag_callback_data_t data2,
1018  jtag_callback_data_t data3)
1019 {
1022 
1029 
1030  /* KLUDGE!
1031  * make callbacks synchronous for now as minidriver requires callback
1032  * to be synchronous.
1033  *
1034  * We can get away with making read and writes asynchronous so we
1035  * don't completely kill performance.
1036  */
1038 }
1039 
1041  jtag_callback_data_t data1,
1042  jtag_callback_data_t data2,
1043  jtag_callback_data_t data3)
1044 {
1045  ((jtag_callback1_t)data1)(data0);
1046  return ERROR_OK;
1047 }
1048 
1050 {
1052  data0,
1053  (jtag_callback_data_t)callback,
1054  0,
1055  0);
1056 }
1057 
1059 {
1060  /* we have to flush the read queue so we have access to
1061  the data the callbacks will use
1062  */
1064  int i;
1065  for (i = 0; i < callbackqueue_pos; i++) {
1066  struct callbackentry *entry = &callbackqueue[i];
1067  jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2,
1068  entry->data3));
1069  }
1070  callbackqueue_pos = 0;
1071 }
1072 
1073 static void writeShiftValue(uint8_t *data, int bits)
1074 {
1075  waitIdle();
1076 
1077  if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc))) {
1078  fprintf(stderr, "Could not read from zy1000 server\n");
1079  exit(-1);
1080  }
1081 
1084 
1085  readqueue[readqueue_pos].dest = data;
1086  readqueue[readqueue_pos].bits = bits;
1087  readqueue_pos++;
1088 
1089  /* KLUDGE!!! minidriver requires readqueue to be synchronous */
1091 }
1092 
1093 #else
1094 
1095 static void writeShiftValue(uint8_t *data, int bits)
1096 {
1097  uint32_t value;
1098  waitIdle();
1099  ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1100  VERBOSE(LOG_INFO("getShiftValue %08x", value));
1101 
1102  /* data in, LSB to MSB */
1103  /* we're shifting in data to MSB, shift data to be aligned for returning the value */
1104  value >>= 32 - bits;
1105 
1106  for (int l = 0; l < bits; l += 8)
1107  data[l/8] = (value >> l)&0xff;
1108 }
1109 
1110 #endif
1111 
1112 #if BUILD_ZY1000_MASTER
1113 
1114 #ifdef WATCHDOG_BASE
1115 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1116 static void watchdog_server(cyg_addrword_t data)
1117 {
1118  int so_reuseaddr_option = 1;
1119 
1120  int fd = socket(AF_INET, SOCK_STREAM, 0);
1121  if (fd == -1) {
1122  LOG_ERROR("error creating socket: %s", strerror(errno));
1123  exit(-1);
1124  }
1125 
1126  setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void *) &so_reuseaddr_option,
1127  sizeof(int));
1128 
1129  struct sockaddr_in sin;
1130  unsigned int address_size;
1131  address_size = sizeof(sin);
1132  memset(&sin, 0, sizeof(sin));
1133  sin.sin_family = AF_INET;
1134  sin.sin_addr.s_addr = INADDR_ANY;
1135  sin.sin_port = htons(8888);
1136 
1137  if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1) {
1138  LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1139  exit(-1);
1140  }
1141 
1142  if (listen(fd, 1) == -1) {
1143  LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1144  exit(-1);
1145  }
1146 
1147 
1148  for (;; ) {
1149  int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1150 
1151  /* Start watchdog, must be reset every 10 seconds. */
1152  HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1153 
1154  if (watchdog_ip < 0) {
1155  LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1156  exit(-1);
1157  }
1158 
1159  int flag = 1;
1160  setsockopt(watchdog_ip, /* socket affected */
1161  IPPROTO_TCP, /* set option at TCP level */
1162  TCP_NODELAY, /* name of option */
1163  (char *)&flag, /* the cast is historical cruft */
1164  sizeof(int)); /* length of option value */
1165 
1166 
1167  char buf;
1168  for (;; ) {
1169  if (read(watchdog_ip, &buf, 1) == 1) {
1170  /* Reset timer */
1171  HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1172  /* Echo so we can telnet in and see that resetting works */
1173  write(watchdog_ip, &buf, 1);
1174  } else {
1175  /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1176  * now.
1177  */
1178  return;
1179  }
1180 
1181  }
1182 
1183  /* Never reached */
1184  }
1185 }
1186 #endif
1187 
1188 #endif
1189 
1190 #if BUILD_ZY1000_MASTER
1191 int interface_jtag_add_sleep(uint32_t us)
1192 {
1193  jtag_sleep(us);
1194  return ERROR_OK;
1195 }
1196 #endif
1197 
1198 #if BUILD_ZY1000_MASTER
1199 volatile void *zy1000_jtag_master;
1200 #include <sys/mman.h>
1201 #endif
1202 
1203 int zy1000_init(void)
1204 {
1205 #if BUILD_ZY1000_MASTER
1206  int fd = open("/dev/mem", O_RDWR | O_SYNC);
1207  if (fd == -1) {
1208  LOG_ERROR("No access to /dev/mem");
1209  return ERROR_FAIL;
1210  }
1211 #ifndef REGISTERS_BASE
1212 #define REGISTERS_BASE 0x9002000
1213 #define REGISTERS_SPAN 128
1214 #endif
1215 
1216  zy1000_jtag_master = mmap(0,
1217  REGISTERS_SPAN,
1218  PROT_READ | PROT_WRITE,
1219  MAP_SHARED,
1220  fd,
1221  REGISTERS_BASE);
1222 
1223  if (zy1000_jtag_master == (void *) -1) {
1224  close(fd);
1225  LOG_ERROR("No access to /dev/mem");
1226  return ERROR_FAIL;
1227  }
1228 #endif
1229 
1230  ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); /* Turn on LED1 & LED2 */
1231 
1232  setPower(true); /* on by default */
1233 
1234  /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1235  zy1000_reset(0, 0);
1236 
1237  return ERROR_OK;
1238 }
1239 
1242  .execute_queue = NULL,
1243 };
1244 
1246  .name = "ZY1000",
1247  .transports = jtag_only,
1248  .commands = zy1000_commands,
1249 
1250  .init = zy1000_init,
1251  .quit = zy1000_quit,
1252  .speed = zy1000_speed,
1253  .khz = zy1000_khz,
1254  .speed_div = zy1000_speed_div,
1255  .power_dropout = zy1000_power_dropout,
1256  .srst_asserted = zy1000_srst_asserted,
1257 
1258  .jtag_ops = &zy1000_interface,
1259 };
void zy1000_flush_readqueue(void)
Definition: zy1000.c:970
int(* jtag_callback_t)(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
Defines the interface of the JTAG callback mechanism.
Definition: jtag.h:425
static bool readSRST(void)
Definition: zy1000.c:121
#define readqueue_size
Definition: zy1000.c:959
void waitIdle(void)
Definition: zy1000.c:925
void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
Definition: zy1000.c:1014
void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
Definition: zy1000.c:1049
int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
see jtag_add_dr_scan()
Definition: zy1000.c:454
#define ZY1000_JTAG_BASE
static void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
Definition: zy1000.c:392
Represents a driver for a debugging interface.
Definition: interface.h:195
static int count
Definition: log.c:62
#define LOG_USER(expr ...)
Definition: log.h:135
static uint32_t fast_target_buffer_get_u32(const void *p, bool le)
Definition: binarybuffer.h:207
const char *const jtag_only[]
Definition: adapter.c:50
void zy1000_reset(int trst, int srst)
Definition: zy1000.c:176
static int jtag_speed
Definition: jtag/core.c:127
int interface_jtag_add_reset(int req_trst, int req_srst)
This drives the actual srst and trst pins.
Definition: zy1000.c:495
void * buf_cpy(const void *from, void *_to, unsigned size)
Copies size bits out of from and into to.
Definition: binarybuffer.c:53
#define ZY1000_PEEK(a, b)
jtag_callback_data_t data2
Definition: zy1000.c:1008
static void setCurrentState(enum tap_state state)
#define VERBOSE(a)
static void tcpip_open(void)
Definition: zy1000.c:876
void * buf_set_ones(void *_buf, unsigned size)
Set the contents of buf with count bits, all set to 1.
Definition: binarybuffer.c:116
void jtag_add_dr_scan(struct jtag_tap *active, int in_num_fields, const struct scan_field *in_fields, tap_state_t state)
Generate a DR SCAN using the fields passed to the function.
Definition: jtag/core.c:451
int tap_get_tms_path_len(tap_state_t from, tap_state_t to)
Function int tap_get_tms_path_len returns the total number of bits that represents a TMS path transit...
Definition: interface.c:206
void zy1000_tcpout(uint32_t address, uint32_t data)
Definition: zy1000.c:912
void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, const uint8_t *buffer, int little, int count)
Definition: zy1000.c:632
int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
Definition: zy1000.c:445
static size_t in_pos
Definition: zy1000.c:807
#define COMMAND_PARSE_ON_OFF(in, out)
parses an on/off command argument
Definition: command.h:405
int ir_length
size of instruction register
Definition: jtag.h:130
#define ERROR_FAIL
Definition: log.h:153
int64_t timeval_ms(void)
static int callbackqueue_pos
Definition: zy1000.c:1012
struct jtag_tap * jtag_tap_next_enabled(struct jtag_tap *p)
Definition: jtag/core.c:264
int interface_jtag_add_clocks(int num_cycles)
Definition: zy1000.c:543
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:144
void(* jtag_callback1_t)(jtag_callback_data_t data0)
Defines a simple JTAG callback that can allow conversions on data scanned in from an interface...
Definition: jtag.h:392
static int srstAsserted
Definition: target.c:2875
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:139
static void shiftValueInner(const enum tap_state state, const enum tap_state endState, int repeat, uint32_t value)
int zy1000_init(void)
Definition: zy1000.c:1203
void jtag_add_pathmove(int num_states, const tap_state_t *path)
Application code must assume that interfaces will implement transitions between states with different...
Definition: jtag/core.c:517
COMMAND_HANDLER(handle_power_command)
Definition: zy1000.c:261
int zy1000_speed(int speed)
Definition: zy1000.c:218
This structure defines a single scan field in the scan.
Definition: jtag.h:107
jtag_callback_data_t data3
Definition: zy1000.c:1009
#define LOG_INFO(expr ...)
Definition: log.h:126
Definition: jtag.h:71
int flag
Definition: mips32.c:52
int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap *tap, uint32_t opcode, uint32_t *data, size_t count)
Definition: zy1000.c:675
int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
Definition: zy1000.c:480
const char * tap_state_name(tap_state_t state)
Function tap_state_name Returns a string suitable for display representing the JTAG tap_state...
Definition: interface.c:355
static size_t out_pos
Definition: zy1000.c:805
#define callbackqueue_size
Definition: zy1000.c:1003
static bool readPowerDropout(void)
Definition: zy1000.c:109
jtag_callback_t callback
Definition: zy1000.c:1005
static void waitSRST(bool asserted)
Definition: zy1000.c:145
int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
Definition: zy1000.c:548
static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
Definition: zy1000.c:609
static int zy1000_srst_asserted(int *srst_asserted)
Definition: zy1000.c:132
#define LOG_ERROR(expr ...)
Definition: log.h:132
int interface_jtag_add_tlr(void)
Definition: zy1000.c:489
static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
Definition: zy1000.c:282
int num_bits
The number of bits this field specifies.
Definition: jtag.h:109
jtag_callback_data_t data0
Definition: zy1000.c:1006
uint32_t zy1000_tcpin(uint32_t address)
Definition: zy1000.c:934
enum arm_mode mode
Definition: armv4_5.c:288
static const struct command_registration zy1000_commands[]
Definition: zy1000.c:773
tap_state
Defines JTAG Test Access Port states.
Definition: jtag.h:46
static void setPower(bool power)
Definition: zy1000.c:252
static uint8_t in_buffer[16384]
Definition: zy1000.c:809
struct adapter_driver zy1000_adapter_driver
Definition: zy1000.c:1245
tap_state_t cmd_queue_cur_state
The current TAP state of the pending JTAG command queue.
Definition: jtag/core.c:94
void keep_alive(void)
Definition: log.c:431
#define ZY1000_POKE(a, b)
Represents a driver for a debugging interface.
Definition: interface.h:218
static bool zy1000_rclk
Definition: zy1000.c:62
int bits
Definition: zy1000.c:962
jtag_callback_data_t data1
Definition: zy1000.c:1007
int tap_get_tms_path(tap_state_t from, tap_state_t to)
This function provides a "bit sequence" indicating what has to be done with TMS during a sequence of ...
Definition: interface.c:201
static size_t in_write
Definition: zy1000.c:808
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:234
uint8_t * cur_instr
current instruction
Definition: jtag.h:149
static int zy1000_khz(int khz, int *jtag_speed)
Definition: zy1000.c:64
static void writeShiftValue(uint8_t *data, int bits)
Definition: zy1000.c:1073
static int64_t start
Definition: log.c:51
static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
Definition: zy1000.c:501
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:328
#define LOG_WARNING(expr ...)
Definition: log.h:129
static uint8_t out_buffer[16384]
Definition: zy1000.c:806
static int zy1000_power_dropout(int *dropout)
Definition: zy1000.c:138
static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
Definition: zy1000.c:1040
Definition: jtag.h:121
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1914
int interface_jtag_execute_queue(void)
Definition: zy1000.c:315
static bool flush_writes(void)
Definition: zy1000.c:811
uint8_t * dest
Definition: zy1000.c:961
int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
Definition: zy1000.c:575
const char * name
Definition: command.h:216
ZY1000_CMD
Definition: zy1000.c:863
static int powerDropout
Definition: target.c:2874
static bool writeLong(uint32_t l)
Definition: zy1000.c:818
#define ZYLIN_KHZ
Definition: zy1000.c:59
int interface_jtag_add_sleep(uint32_t us)
Definition: zy1000.c:948
unsigned supported
Bit vector listing capabilities exposed by this driver.
Definition: interface.h:199
tap_state_t tap_state_transition(tap_state_t cur_state, bool tms)
Function tap_state_transition takes a current TAP state and returns the next state according to the t...
Definition: interface.c:234
enum tap_state tap_state_t
Defines JTAG Test Access Port states.
int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
Definition: zy1000.c:538
Definition: jtag.h:74
const char *const name
The name of the interface driver.
Definition: interface.h:220
static struct callbackentry callbackqueue[callbackqueue_size]
static struct jtag_interface zy1000_interface
Definition: zy1000.c:1240
int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
see jtag_add_ir_scan()
Definition: zy1000.c:407
int bypass
Bypass register selected.
Definition: jtag.h:151
int jtag_execute_queue(void)
For software FIFO implementations, the queued commands can be executed during this call or earlier...
Definition: jtag/core.c:1044
tap_state_t tap_get_state(void)
This function gets the state of the "state follower" which tracks the state of the TAPs connected to ...
Definition: interface.c:48
static char * tcp_server
Definition: zy1000.c:281
static void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
Definition: zy1000.c:351
#define ARRAY_SIZE(x)
Compute the number of elements of a variable length array.
Definition: types.h:74
#define ERROR_OK
Definition: log.h:147
intptr_t jtag_callback_data_t
Defines the type of data passed to the jtag_callback_t interface.
Definition: jtag.h:382
#define DEBUG_CAP_TMS_SEQ
Definition: interface.h:200
void jtag_sleep(uint32_t us)
Definition: jtag/core.c:1069
void zy1000_flush_callbackqueue(void)
Definition: zy1000.c:1058
static int readqueue_pos
Definition: zy1000.c:965
static int zy1000_speed_div(int speed, int *khz)
Definition: zy1000.c:99
static bool savePower
Definition: zy1000.c:250
int zy1000_quit(void)
Definition: zy1000.c:309
#define NULL
Definition: usb.h:27
#define LOG_DEBUG(expr ...)
Definition: log.h:118
tap_state_t tap_get_end_state(void)
For more information,.
Definition: interface.c:67
static void embeddedice_write_reg_inner(struct jtag_tap *tap, int reg_addr, uint32_t value)
Definition: embeddedice.h:112
static struct @30 readqueue[readqueue_size]
int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *tap, uint32_t opcode, uint32_t *data, size_t count)
Definition: arm11_dbgtap.c:569
static int tcp_ip
Definition: zy1000.c:802
void jtag_set_error(int error)
Set the current JTAG core execution error, unless one was set by a previous call previously.
Definition: jtag/core.c:139
static int zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
Definition: zy1000.c:293
static bool readLong(uint32_t *out_data)
Definition: zy1000.c:832
static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[]
JTAG path for arm11_run_instr_data_to_core_noack.
Definition: arm11_dbgtap.c:560