OpenOCD
lpc2900.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2009 by *
5  * Rolf Meeser <rolfm_9dq@yahoo.de> *
6  ***************************************************************************/
7 
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
11 
12 #include "imp.h"
13 #include <helper/binarybuffer.h>
14 #include <target/algorithm.h>
15 #include <target/arm.h>
16 #include <target/image.h>
17 
18 /* 1024 bytes */
19 #define KiB 1024
20 
21 /* Some flash constants */
22 #define FLASH_PAGE_SIZE 512 /* bytes */
23 #define FLASH_ERASE_TIME 100000 /* microseconds */
24 #define FLASH_PROGRAM_TIME 1000 /* microseconds */
25 
26 /* Chip ID / Feature Registers */
27 #define CHIPID 0xE0000000 /* Chip ID */
28 #define FEAT0 0xE0000100 /* Chip feature 0 */
29 #define FEAT1 0xE0000104 /* Chip feature 1 */
30 #define FEAT2 0xE0000108 /* Chip feature 2 (contains flash size indicator) */
31 #define FEAT3 0xE000010C /* Chip feature 3 */
32 
33 #define EXPECTED_CHIPID 0x209CE02B /* Chip ID of all LPC2900 devices */
34 
35 /* Flash/EEPROM Control Registers */
36 #define FCTR 0x20200000 /* Flash control */
37 #define FPTR 0x20200008 /* Flash program-time */
38 #define FTCTR 0x2020000C /* Flash test control */
39 #define FBWST 0x20200010 /* Flash bridge wait-state */
40 #define FCRA 0x2020001C /* Flash clock divider */
41 #define FMSSTART 0x20200020 /* Flash Built-In Self Test start address */
42 #define FMSSTOP 0x20200024 /* Flash Built-In Self Test stop address */
43 #define FMS16 0x20200028 /* Flash 16-bit signature */
44 #define FMSW0 0x2020002C /* Flash 128-bit signature Word 0 */
45 #define FMSW1 0x20200030 /* Flash 128-bit signature Word 1 */
46 #define FMSW2 0x20200034 /* Flash 128-bit signature Word 2 */
47 #define FMSW3 0x20200038 /* Flash 128-bit signature Word 3 */
48 
49 #define EECMD 0x20200080 /* EEPROM command */
50 #define EEADDR 0x20200084 /* EEPROM address */
51 #define EEWDATA 0x20200088 /* EEPROM write data */
52 #define EERDATA 0x2020008C /* EEPROM read data */
53 #define EEWSTATE 0x20200090 /* EEPROM wait state */
54 #define EECLKDIV 0x20200094 /* EEPROM clock divider */
55 #define EEPWRDWN 0x20200098 /* EEPROM power-down/start */
56 #define EEMSSTART 0x2020009C /* EEPROM BIST start address */
57 #define EEMSSTOP 0x202000A0 /* EEPROM BIST stop address */
58 #define EEMSSIG 0x202000A4 /* EEPROM 24-bit BIST signature */
59 
60 #define INT_CLR_ENABLE 0x20200FD8 /* Flash/EEPROM interrupt clear enable */
61 #define INT_SET_ENABLE 0x20200FDC /* Flash/EEPROM interrupt set enable */
62 #define INT_STATUS 0x20200FE0 /* Flash/EEPROM interrupt status */
63 #define INT_ENABLE 0x20200FE4 /* Flash/EEPROM interrupt enable */
64 #define INT_CLR_STATUS 0x20200FE8 /* Flash/EEPROM interrupt clear status */
65 #define INT_SET_STATUS 0x20200FEC /* Flash/EEPROM interrupt set status */
66 
67 /* Interrupt sources */
68 #define INTSRC_END_OF_PROG (1 << 28)
69 #define INTSRC_END_OF_BIST (1 << 27)
70 #define INTSRC_END_OF_RDWR (1 << 26)
71 #define INTSRC_END_OF_MISR (1 << 2)
72 #define INTSRC_END_OF_BURN (1 << 1)
73 #define INTSRC_END_OF_ERASE (1 << 0)
74 
75 /* FCTR bits */
76 #define FCTR_FS_LOADREQ (1 << 15)
77 #define FCTR_FS_CACHECLR (1 << 14)
78 #define FCTR_FS_CACHEBYP (1 << 13)
79 #define FCTR_FS_PROGREQ (1 << 12)
80 #define FCTR_FS_RLS (1 << 11)
81 #define FCTR_FS_PDL (1 << 10)
82 #define FCTR_FS_PD (1 << 9)
83 #define FCTR_FS_WPB (1 << 7)
84 #define FCTR_FS_ISS (1 << 6)
85 #define FCTR_FS_RLD (1 << 5)
86 #define FCTR_FS_DCR (1 << 4)
87 #define FCTR_FS_WEB (1 << 2)
88 #define FCTR_FS_WRE (1 << 1)
89 #define FCTR_FS_CS (1 << 0)
90 /* FPTR bits */
91 #define FPTR_EN_T (1 << 15)
92 /* FTCTR bits */
93 #define FTCTR_FS_BYPASS_R (1 << 29)
94 #define FTCTR_FS_BYPASS_W (1 << 28)
95 /* FMSSTOP bits */
96 #define FMSSTOP_MISR_START (1 << 17)
97 /* EEMSSTOP bits */
98 #define EEMSSTOP_STRTBIST (1 << 31)
99 
100 /* Index sector */
101 #define ISS_CUSTOMER_START1 (0x830)
102 #define ISS_CUSTOMER_END1 (0xA00)
103 #define ISS_CUSTOMER_SIZE1 (ISS_CUSTOMER_END1 - ISS_CUSTOMER_START1)
104 #define ISS_CUSTOMER_NWORDS1 (ISS_CUSTOMER_SIZE1 / 4)
105 #define ISS_CUSTOMER_START2 (0xA40)
106 #define ISS_CUSTOMER_END2 (0xC00)
107 #define ISS_CUSTOMER_SIZE2 (ISS_CUSTOMER_END2 - ISS_CUSTOMER_START2)
108 #define ISS_CUSTOMER_NWORDS2 (ISS_CUSTOMER_SIZE2 / 4)
109 #define ISS_CUSTOMER_SIZE (ISS_CUSTOMER_SIZE1 + ISS_CUSTOMER_SIZE2)
110 
118  bool is_probed;
119 
126  uint32_t chipid;
127 
133  char *target_name;
134 
140  uint32_t clk_sys_fmc;
141 
148  uint32_t risky;
149 
155  uint32_t max_ram_block;
156 
157 };
158 
159 static uint32_t lpc2900_wait_status(struct flash_bank *bank, uint32_t mask, int timeout);
160 static void lpc2900_setup(struct flash_bank *bank);
161 static uint32_t lpc2900_is_ready(struct flash_bank *bank);
162 static uint32_t lpc2900_read_security_status(struct flash_bank *bank);
163 static uint32_t lpc2900_run_bist128(struct flash_bank *bank,
164  uint32_t addr_from, uint32_t addr_to,
165  uint32_t signature[4]);
166 static unsigned int lpc2900_address2sector(struct flash_bank *bank, uint32_t offset);
167 static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var);
168 
169 /*********************** Helper functions **************************/
170 
180 static uint32_t lpc2900_wait_status(struct flash_bank *bank,
181  uint32_t mask,
182  int timeout)
183 {
184  uint32_t int_status;
185  struct target *target = bank->target;
186 
187  do {
188  alive_sleep(1);
189  timeout--;
190  target_read_u32(target, INT_STATUS, &int_status);
191  } while (((int_status & mask) == 0) && (timeout != 0));
192 
193  if (timeout == 0) {
194  LOG_DEBUG("Timeout!");
196  }
197 
198  return ERROR_OK;
199 }
200 
208 static void lpc2900_setup(struct flash_bank *bank)
209 {
210  uint32_t fcra;
211  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
212 
213  /* Power up the flash block */
215 
216  fcra = (lpc2900_info->clk_sys_fmc / (3 * 66000)) - 1;
217  target_write_u32(bank->target, FCRA, fcra);
218 }
219 
227 static uint32_t lpc2900_is_ready(struct flash_bank *bank)
228 {
229  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
230 
231  if (!lpc2900_info->is_probed)
233 
234  if (bank->target->state != TARGET_HALTED) {
235  LOG_ERROR("Target not halted");
237  }
238 
239  return ERROR_OK;
240 }
241 
248 {
249  uint32_t status = lpc2900_is_ready(bank);
250  if (status != ERROR_OK)
251  return status;
252 
253  struct target *target = bank->target;
254 
255  /* Enable ISS access */
257 
258  /* Read the relevant block of memory from the ISS sector */
259  uint32_t iss_secured_field[0x230/16][4];
260  target_read_memory(target, bank->base + 0xC00, 4, 0x230/4,
261  (uint8_t *)iss_secured_field);
262 
263  /* Disable ISS access */
265 
266  /* Check status of each sector. Note that the sector numbering in the LPC2900
267  * is different from the logical sector numbers used in OpenOCD!
268  * Refer to the user manual for details.
269  *
270  * All zeros (16x 0x00) are treated as a secured sector (is_protected = 1)
271  * All ones (16x 0xFF) are treated as a non-secured sector (is_protected = 0)
272  * Anything else is undefined (is_protected = -1). This is treated as
273  * a protected sector!
274  */
275  for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
276  unsigned int index_t;
277 
278  /* Convert logical sector number to physical sector number */
279  if (sector <= 4)
280  index_t = sector + 11;
281  else if (sector <= 7)
282  index_t = sector + 27;
283  else
284  index_t = sector - 8;
285 
286  bank->sectors[sector].is_protected = -1;
287 
288  if ((iss_secured_field[index_t][0] == 0x00000000) &&
289  (iss_secured_field[index_t][1] == 0x00000000) &&
290  (iss_secured_field[index_t][2] == 0x00000000) &&
291  (iss_secured_field[index_t][3] == 0x00000000))
292  bank->sectors[sector].is_protected = 1;
293 
294  if ((iss_secured_field[index_t][0] == 0xFFFFFFFF) &&
295  (iss_secured_field[index_t][1] == 0xFFFFFFFF) &&
296  (iss_secured_field[index_t][2] == 0xFFFFFFFF) &&
297  (iss_secured_field[index_t][3] == 0xFFFFFFFF))
298  bank->sectors[sector].is_protected = 0;
299  }
300 
301  return ERROR_OK;
302 }
303 
312 static uint32_t lpc2900_run_bist128(struct flash_bank *bank,
313  uint32_t addr_from,
314  uint32_t addr_to,
315  uint32_t signature[4])
316 {
317  struct target *target = bank->target;
318 
319  /* Clear END_OF_MISR interrupt status */
321 
322  /* Start address */
323  target_write_u32(target, FMSSTART, addr_from >> 4);
324  /* End address, and issue start command */
326 
327  /* Poll for end of operation. Calculate a reasonable timeout. */
330 
331  /* Return the signature */
332  uint8_t sig_buf[4 * 4];
333  target_read_memory(target, FMSW0, 4, 4, sig_buf);
334  target_buffer_get_u32_array(target, sig_buf, 4, signature);
335 
336  return ERROR_OK;
337 }
338 
348 static unsigned int lpc2900_address2sector(struct flash_bank *bank,
349  uint32_t offset)
350 {
351  uint32_t address = bank->base + offset;
352 
353  /* Run through all sectors of this bank */
354  for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
355  /* Return immediately if address is within the current sector */
356  if (address < (bank->sectors[sector].offset + bank->sectors[sector].size))
357  return sector;
358  }
359 
360  /* We should never come here. If we do, return an arbitrary sector number. */
361  return 0;
362 }
363 
372  int pagenum,
373  uint8_t page[FLASH_PAGE_SIZE])
374 {
375  /* Only pages 4...7 are user writable */
376  if ((pagenum < 4) || (pagenum > 7)) {
377  LOG_ERROR("Refuse to burn index sector page %d", pagenum);
379  }
380 
381  /* Get target, and check if it's halted */
382  struct target *target = bank->target;
383  if (target->state != TARGET_HALTED) {
384  LOG_ERROR("Target not halted");
386  }
387 
388  /* Private info */
389  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
390 
391  /* Enable flash block and set the correct CRA clock of 66 kHz */
393 
394  /* Un-protect the index sector */
395  target_write_u32(target, bank->base, 0);
399 
400  /* Set latch load mode */
403 
404  /* Write whole page to flash data latches */
406  bank->base + pagenum * FLASH_PAGE_SIZE,
407  4, FLASH_PAGE_SIZE / 4, page) != ERROR_OK) {
408  LOG_ERROR("Index sector write failed @ page %d", pagenum);
410 
412  }
413 
414  /* Clear END_OF_BURN interrupt status */
416 
417  /* Set the program/erase time to FLASH_PROGRAM_TIME */
419  FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc,
421 
422  /* Trigger flash write */
426 
427  /* Wait for the end of the write operation. If it's not over after one
428  * second, something went dreadfully wrong... :-(
429  */
431  LOG_ERROR("Index sector write failed @ page %d", pagenum);
433 
435  }
436 
438 
439  return ERROR_OK;
440 }
441 
448 static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var)
449 {
450  /* ((time[µs]/1e6) * f[Hz]) + 511
451  * FPTR.TR = -------------------------------
452  * 512
453  */
454 
455  uint32_t tr_val = (uint32_t)((((time_var / 1e6) * clock_var) + 511.0) / 512.0);
456 
457  return tr_val;
458 }
459 
460 /*********************** Private flash commands **************************/
461 
462 
469 COMMAND_HANDLER(lpc2900_handle_signature_command)
470 {
471  uint32_t status;
472  uint32_t signature[4];
473 
474  if (CMD_ARGC < 1)
476 
477  struct flash_bank *bank;
478  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
479  if (retval != ERROR_OK)
480  return retval;
481 
482  if (bank->target->state != TARGET_HALTED) {
483  LOG_ERROR("Target not halted");
485  }
486 
487  /* Run BIST over whole flash range */
488  status = lpc2900_run_bist128(bank, bank->base, bank->base + (bank->size - 1), signature);
489  if (status != ERROR_OK)
490  return status;
491 
492  command_print(CMD, "signature: 0x%8.8" PRIx32
493  ":0x%8.8" PRIx32
494  ":0x%8.8" PRIx32
495  ":0x%8.8" PRIx32,
496  signature[3], signature[2], signature[1], signature[0]);
497 
498  return ERROR_OK;
499 }
500 
507 COMMAND_HANDLER(lpc2900_handle_read_custom_command)
508 {
509  if (CMD_ARGC < 2)
511 
512  struct flash_bank *bank;
513  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
514  if (retval != ERROR_OK)
515  return retval;
516 
517  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
518  lpc2900_info->risky = 0;
519 
520  /* Get target, and check if it's halted */
521  struct target *target = bank->target;
522  if (target->state != TARGET_HALTED) {
523  LOG_ERROR("Target not halted");
525  }
526 
527  /* Storage for customer info. Read in two parts */
528  uint8_t customer[4 * (ISS_CUSTOMER_NWORDS1 + ISS_CUSTOMER_NWORDS2)];
529 
530  /* Enable access to index sector */
532 
533  /* Read two parts */
536  &customer[0]);
539  &customer[4 * ISS_CUSTOMER_NWORDS1]);
540 
541  /* Deactivate access to index sector */
543 
544  /* Try and open the file */
545  struct fileio *fileio;
546  const char *filename = CMD_ARGV[1];
547  int ret = fileio_open(&fileio, filename, FILEIO_WRITE, FILEIO_BINARY);
548  if (ret != ERROR_OK) {
549  LOG_WARNING("Could not open file %s", filename);
550  return ret;
551  }
552 
553  size_t nwritten;
554  ret = fileio_write(fileio, sizeof(customer), customer, &nwritten);
555  if (ret != ERROR_OK) {
556  LOG_ERROR("Write operation to file %s failed", filename);
558  return ret;
559  }
560 
562 
563  return ERROR_OK;
564 }
565 
569 COMMAND_HANDLER(lpc2900_handle_password_command)
570 {
571  if (CMD_ARGC < 2)
573 
574  struct flash_bank *bank;
575  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
576  if (retval != ERROR_OK)
577  return retval;
578 
579  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
580 
581 #define ISS_PASSWORD "I_know_what_I_am_doing"
582 
583  lpc2900_info->risky = !strcmp(CMD_ARGV[1], ISS_PASSWORD);
584 
585  if (!lpc2900_info->risky) {
586  command_print(CMD, "Wrong password (use '%s')", ISS_PASSWORD);
588  }
589 
591  "Potentially dangerous operation allowed in next command!");
592 
593  return ERROR_OK;
594 }
595 
599 COMMAND_HANDLER(lpc2900_handle_write_custom_command)
600 {
601  if (CMD_ARGC < 2)
603 
604  struct flash_bank *bank;
605  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
606  if (retval != ERROR_OK)
607  return retval;
608 
609  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
610 
611  /* Check if command execution is allowed. */
612  if (!lpc2900_info->risky) {
613  command_print(CMD, "Command execution not allowed!");
615  }
616  lpc2900_info->risky = 0;
617 
618  /* Get target, and check if it's halted */
619  struct target *target = bank->target;
620  if (target->state != TARGET_HALTED) {
621  LOG_ERROR("Target not halted");
623  }
624 
625  /* The image will always start at offset 0 */
626  struct image image;
627  image.base_address_set = true;
628  image.base_address = 0;
629  image.start_address_set = false;
630 
631  const char *filename = CMD_ARGV[1];
632  const char *type = (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL;
633  retval = image_open(&image, filename, type);
634  if (retval != ERROR_OK)
635  return retval;
636 
637  /* Do a sanity check: The image must be exactly the size of the customer
638  programmable area. Any other size is rejected. */
639  if (image.num_sections != 1) {
640  LOG_ERROR("Only one section allowed in image file.");
642  }
643  if ((image.sections[0].base_address != 0) ||
645  LOG_ERROR("Incorrect image file size. Expected %d, "
646  "got %" PRIu32,
649  }
650 
651  /* Well boys, I reckon this is it... */
652 
653  /* Customer info is split into two blocks in pages 4 and 5. */
654  uint8_t page[FLASH_PAGE_SIZE];
655 
656  /* Page 4 */
658  memset(page, 0xff, FLASH_PAGE_SIZE);
659  size_t size_read;
660  retval = image_read_section(&image, 0, 0,
661  ISS_CUSTOMER_SIZE1, &page[offset], &size_read);
662  if (retval != ERROR_OK) {
663  LOG_ERROR("couldn't read from file '%s'", filename);
664  image_close(&image);
665  return retval;
666  }
667  retval = lpc2900_write_index_page(bank, 4, page);
668  if (retval != ERROR_OK) {
669  image_close(&image);
670  return retval;
671  }
672 
673  /* Page 5 */
675  memset(page, 0xff, FLASH_PAGE_SIZE);
677  ISS_CUSTOMER_SIZE2, &page[offset], &size_read);
678  if (retval != ERROR_OK) {
679  LOG_ERROR("couldn't read from file '%s'", filename);
680  image_close(&image);
681  return retval;
682  }
683  retval = lpc2900_write_index_page(bank, 5, page);
684  if (retval != ERROR_OK) {
685  image_close(&image);
686  return retval;
687  }
688 
689  image_close(&image);
690 
691  return ERROR_OK;
692 }
693 
697 COMMAND_HANDLER(lpc2900_handle_secure_sector_command)
698 {
699  if (CMD_ARGC < 3)
701 
702  /* Get the bank descriptor */
703  struct flash_bank *bank;
704  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
705  if (retval != ERROR_OK)
706  return retval;
707 
708  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
709 
710  /* Check if command execution is allowed. */
711  if (!lpc2900_info->risky) {
712  command_print(CMD, "Command execution not allowed! "
713  "(use 'password' command first)");
715  }
716  lpc2900_info->risky = 0;
717 
718  /* Read sector range, and do a sanity check. */
719  unsigned int first, last;
720  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], first);
721  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], last);
722  if ((first >= bank->num_sectors) ||
723  (last >= bank->num_sectors) ||
724  (first > last)) {
725  command_print(CMD, "Illegal sector range");
727  }
728 
729  uint8_t page[FLASH_PAGE_SIZE];
730 
731  /* Sectors in page 6 */
732  if ((first <= 4) || (last >= 8)) {
733  memset(&page, 0xff, FLASH_PAGE_SIZE);
734  for (unsigned int sector = first; sector <= last; sector++) {
735  if (sector <= 4)
736  memset(&page[0xB0 + 16*sector], 0, 16);
737  else if (sector >= 8)
738  memset(&page[0x00 + 16*(sector - 8)], 0, 16);
739  }
740 
741  retval = lpc2900_write_index_page(bank, 6, page);
742  if (retval != ERROR_OK) {
743  LOG_ERROR("failed to update index sector page 6");
744  return retval;
745  }
746  }
747 
748  /* Sectors in page 7 */
749  if ((first <= 7) && (last >= 5)) {
750  memset(&page, 0xff, FLASH_PAGE_SIZE);
751  for (unsigned int sector = first; sector <= last; sector++) {
752  if ((sector >= 5) && (sector <= 7))
753  memset(&page[0x00 + 16*(sector - 5)], 0, 16);
754  }
755 
756  retval = lpc2900_write_index_page(bank, 7, page);
757  if (retval != ERROR_OK) {
758  LOG_ERROR("failed to update index sector page 7");
759  return retval;
760  }
761  }
762 
764  "Sectors security will become effective after next power cycle");
765 
766  /* Update the sector security status */
768  LOG_ERROR("Cannot determine sector security status");
770  }
771 
772  return ERROR_OK;
773 }
774 
778 COMMAND_HANDLER(lpc2900_handle_secure_jtag_command)
779 {
780  if (CMD_ARGC < 1)
782 
783  /* Get the bank descriptor */
784  struct flash_bank *bank;
785  int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
786  if (retval != ERROR_OK)
787  return retval;
788 
789  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
790 
791  /* Check if command execution is allowed. */
792  if (!lpc2900_info->risky) {
793  command_print(CMD, "Command execution not allowed! "
794  "(use 'password' command first)");
796  }
797  lpc2900_info->risky = 0;
798 
799  /* Prepare page */
800  uint8_t page[FLASH_PAGE_SIZE];
801  memset(&page, 0xff, FLASH_PAGE_SIZE);
802 
803 
804  /* Insert "soft" protection word */
805  page[0x30 + 15] = 0x7F;
806  page[0x30 + 11] = 0x7F;
807  page[0x30 + 7] = 0x7F;
808  page[0x30 + 3] = 0x7F;
809 
810  /* Write to page 5 */
811  retval = lpc2900_write_index_page(bank, 5, page);
812  if (retval != ERROR_OK) {
813  LOG_ERROR("failed to update index sector page 5");
814  return retval;
815  }
816 
817  LOG_INFO("JTAG security set. Good bye!");
818 
819  return ERROR_OK;
820 }
821 
822 /*********************** Flash interface functions **************************/
823 
824 static const struct command_registration lpc2900_exec_command_handlers[] = {
825  {
826  .name = "signature",
827  .usage = "<bank>",
828  .handler = lpc2900_handle_signature_command,
829  .mode = COMMAND_EXEC,
830  .help = "Calculate and display signature of flash bank.",
831  },
832  {
833  .name = "read_custom",
834  .handler = lpc2900_handle_read_custom_command,
835  .mode = COMMAND_EXEC,
836  .usage = "bank_id filename",
837  .help = "Copies 912 bytes of customer information "
838  "from index sector into file.",
839  },
840  {
841  .name = "password",
842  .handler = lpc2900_handle_password_command,
843  .mode = COMMAND_EXEC,
844  .usage = "bank_id password",
845  .help = "Enter fixed password to enable 'dangerous' options.",
846  },
847  {
848  .name = "write_custom",
849  .handler = lpc2900_handle_write_custom_command,
850  .mode = COMMAND_EXEC,
851  .usage = "bank_id filename ('bin'|'ihex'|'elf'|'s19')",
852  .help = "Copies 912 bytes of customer info from file "
853  "to index sector.",
854  },
855  {
856  .name = "secure_sector",
857  .handler = lpc2900_handle_secure_sector_command,
858  .mode = COMMAND_EXEC,
859  .usage = "bank_id first_sector last_sector",
860  .help = "Activate sector security for a range of sectors. "
861  "It will be effective after a power cycle.",
862  },
863  {
864  .name = "secure_jtag",
865  .handler = lpc2900_handle_secure_jtag_command,
866  .mode = COMMAND_EXEC,
867  .usage = "bank_id",
868  .help = "Disable the JTAG port. "
869  "It will be effective after a power cycle.",
870  },
872 };
873 
874 static const struct command_registration lpc2900_command_handlers[] = {
875  {
876  .name = "lpc2900",
877  .mode = COMMAND_ANY,
878  .help = "LPC2900 flash command group",
879  .usage = "",
881  },
883 };
884 
886 FLASH_BANK_COMMAND_HANDLER(lpc2900_flash_bank_command)
887 {
888  struct lpc2900_flash_bank *lpc2900_info;
889 
890  if (CMD_ARGC < 6)
892 
893  lpc2900_info = malloc(sizeof(struct lpc2900_flash_bank));
894  bank->driver_priv = lpc2900_info;
895 
896  /* Get flash clock.
897  * Reject it if we can't meet the requirements for program time
898  * (if clock too slow), or for erase time (clock too fast).
899  */
900  uint32_t clk_sys_fmc;
902  lpc2900_info->clk_sys_fmc = clk_sys_fmc * 1000;
903 
904  uint32_t clock_limit;
905  /* Check program time limit */
906  clock_limit = 512000000l / FLASH_PROGRAM_TIME;
907  if (lpc2900_info->clk_sys_fmc < clock_limit) {
908  LOG_WARNING("flash clock must be at least %" PRIu32 " kHz",
909  (clock_limit / 1000));
911  }
912 
913  /* Check erase time limit */
914  clock_limit = (uint32_t)((32767.0 * 512.0 * 1e6) / FLASH_ERASE_TIME);
915  if (lpc2900_info->clk_sys_fmc > clock_limit) {
916  LOG_WARNING("flash clock must be a maximum of %" PRIu32 " kHz",
917  (clock_limit / 1000));
919  }
920 
921  /* Chip ID will be obtained by probing the device later */
922  lpc2900_info->chipid = 0;
923  lpc2900_info->is_probed = false;
924 
925  return ERROR_OK;
926 }
927 
935 static int lpc2900_erase(struct flash_bank *bank, unsigned int first,
936  unsigned int last)
937 {
938  uint32_t status;
939  unsigned int last_unsecured_sector;
940  bool has_unsecured_sector;
941  struct target *target = bank->target;
942  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
943 
944 
946  if (status != ERROR_OK)
947  return status;
948 
949  /* Sanity check on sector range */
950  if ((last < first) || (last >= bank->num_sectors)) {
951  LOG_INFO("Bad sector range");
953  }
954 
955  /* Update the info about secured sectors */
957 
958  /* The selected sector range might include secured sectors. An attempt
959  * to erase such a sector will cause the erase to fail also for unsecured
960  * sectors. It is necessary to determine the last unsecured sector now,
961  * because we have to treat the last relevant sector in the list in
962  * a special way.
963  */
964  last_unsecured_sector = -1;
965  has_unsecured_sector = false;
966  for (unsigned int sector = first; sector <= last; sector++) {
967  if (!bank->sectors[sector].is_protected) {
968  last_unsecured_sector = sector;
969  has_unsecured_sector = true;
970  }
971  }
972 
973  /* Exit now, in case of the rare constellation where all sectors in range
974  * are secured. This is regarded a success, since erasing/programming of
975  * secured sectors shall be handled transparently.
976  */
977  if (!has_unsecured_sector)
978  return ERROR_OK;
979 
980  /* Enable flash block and set the correct CRA clock of 66 kHz */
982 
983  /* Clear END_OF_ERASE interrupt status */
985 
986  /* Set the program/erase timer to FLASH_ERASE_TIME */
988  FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc,
990 
991  /* Sectors are marked for erasure, then erased all together */
992  for (unsigned int sector = first; sector <= last_unsecured_sector; sector++) {
993  /* Only mark sectors that aren't secured. Any attempt to erase a group
994  * of sectors will fail if any single one of them is secured!
995  */
996  if (!bank->sectors[sector].is_protected) {
997  /* Unprotect the sector */
998  target_write_u32(target, bank->sectors[sector].offset, 0);
1002 
1003  /* Mark the sector for erasure. The last sector in the list
1004  triggers the erasure. */
1005  target_write_u32(target, bank->sectors[sector].offset, 0);
1006  if (sector == last_unsecured_sector) {
1009  } else {
1013  }
1014  }
1015  }
1016 
1017  /* Wait for the end of the erase operation. If it's not over after two seconds,
1018  * something went dreadfully wrong... :-(
1019  */
1022 
1023  /* Normal flash operating mode */
1025 
1026  return ERROR_OK;
1027 }
1028 
1029 /* lpc2900_protect command is not supported.
1030 * "Protection" in LPC2900 terms is handled transparently. Sectors will
1031 * automatically be unprotected as needed.
1032 * Instead we use the concept of sector security. A secured sector is shown
1033 * as "protected" in OpenOCD. Sector security is a permanent feature, and
1034 * cannot be disabled once activated.
1035 */
1036 
1045 static int lpc2900_write(struct flash_bank *bank, const uint8_t *buffer,
1046  uint32_t offset, uint32_t count)
1047 {
1048  uint8_t page[FLASH_PAGE_SIZE];
1049  uint32_t status;
1050  uint32_t num_bytes;
1051  struct target *target = bank->target;
1052  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
1053  int retval;
1054 
1055  static const uint32_t write_target_code[] = {
1056  /* Set auto latch mode: FCTR=CS|WRE|WEB */
1057  0xe3a0a007, /* loop mov r10, #0x007 */
1058  0xe583a000, /* str r10,[r3,#0] */
1059 
1060  /* Load complete page into latches */
1061  0xe3a06020, /* mov r6,#(512/16) */
1062  0xe8b00f00, /* next ldmia r0!,{r8-r11} */
1063  0xe8a10f00, /* stmia r1!,{r8-r11} */
1064  0xe2566001, /* subs r6,#1 */
1065  0x1afffffb, /* bne next */
1066 
1067  /* Clear END_OF_BURN interrupt status */
1068  0xe3a0a002, /* mov r10,#(1 << 1) */
1069  0xe583afe8, /* str r10,[r3,#0xfe8] */
1070 
1071  /* Set the erase time to FLASH_PROGRAM_TIME */
1072  0xe5834008, /* str r4,[r3,#8] */
1073 
1074  /* Trigger flash write
1075  * FCTR = CS | WRE | WPB | PROGREQ */
1076  0xe3a0a083, /* mov r10,#0x83 */
1077  0xe38aaa01, /* orr r10,#0x1000 */
1078  0xe583a000, /* str r10,[r3,#0] */
1079 
1080  /* Wait for end of burn */
1081  0xe593afe0, /* wait ldr r10,[r3,#0xfe0] */
1082  0xe21aa002, /* ands r10,#(1 << 1) */
1083  0x0afffffc, /* beq wait */
1084 
1085  /* End? */
1086  0xe2522001, /* subs r2,#1 */
1087  0x1affffed, /* bne loop */
1088 
1089  0xeafffffe /* done b done */
1090  };
1091 
1092 
1094  if (status != ERROR_OK)
1095  return status;
1096 
1097  /* Enable flash block and set the correct CRA clock of 66 kHz */
1099 
1100  /* Update the info about secured sectors */
1102 
1103  /* Unprotect all involved sectors */
1104  for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
1105  /* Start address in or before this sector?
1106  * End address in or behind this sector? */
1107  if (((bank->base + offset) <
1108  (bank->sectors[sector].offset + bank->sectors[sector].size)) &&
1109  ((bank->base + (offset + count - 1)) >= bank->sectors[sector].offset)) {
1110  /* This sector is involved and needs to be unprotected.
1111  * Don't do it for secured sectors.
1112  */
1113  if (!bank->sectors[sector].is_protected) {
1114  target_write_u32(target, bank->sectors[sector].offset, 0);
1118  }
1119  }
1120  }
1121 
1122  /* Set the program/erase time to FLASH_PROGRAM_TIME */
1123  uint32_t prog_time = FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc, FLASH_PROGRAM_TIME);
1124 
1125  /* If there is a working area of reasonable size, use it to program via
1126  * a target algorithm. If not, fall back to host programming. */
1127 
1128  /* We need some room for target code. */
1129  const uint32_t target_code_size = sizeof(write_target_code);
1130 
1131  /* Try working area allocation. Start with a large buffer, and try with
1132  * reduced size if that fails. */
1133  struct working_area *warea;
1134  uint32_t buffer_size = lpc2900_info->max_ram_block - 1 * KiB;
1136  buffer_size + target_code_size,
1137  &warea) != ERROR_OK) {
1138  /* Try a smaller buffer now, and stop if it's too small. */
1139  buffer_size -= 1 * KiB;
1140  if (buffer_size < 2 * KiB) {
1141  LOG_INFO("no (large enough) working area, falling back to host mode");
1142  warea = NULL;
1143  break;
1144  }
1145  }
1146 
1147  if (warea) {
1148  struct reg_param reg_params[5];
1149  struct arm_algorithm arm_algo;
1150 
1151  /* We can use target mode. Download the algorithm. */
1152  uint8_t code[sizeof(write_target_code)];
1153  target_buffer_set_u32_array(target, code, ARRAY_SIZE(write_target_code),
1154  write_target_code);
1155  retval = target_write_buffer(target, (warea->address) + buffer_size, sizeof(code), code);
1156  if (retval != ERROR_OK) {
1157  LOG_ERROR("Unable to write block write code to target");
1160  }
1161 
1162  init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1163  init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1164  init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1165  init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1166  init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1167 
1168  /* Write to flash in large blocks */
1169  while (count != 0) {
1170  uint32_t this_npages;
1171  const uint8_t *this_buffer;
1172  unsigned int start_sector = lpc2900_address2sector(bank, offset);
1173 
1174  /* First page / last page / rest */
1175  if (offset % FLASH_PAGE_SIZE) {
1176  /* Block doesn't start on page boundary.
1177  * Burn first partial page separately. */
1178  memset(&page, 0xff, sizeof(page));
1179  memcpy(&page[offset % FLASH_PAGE_SIZE],
1180  buffer,
1182  this_npages = 1;
1183  this_buffer = &page[0];
1186  } else if (count < FLASH_PAGE_SIZE) {
1187  /* Download last incomplete page separately. */
1188  memset(&page, 0xff, sizeof(page));
1189  memcpy(&page, buffer, count);
1190  this_npages = 1;
1191  this_buffer = &page[0];
1193  } else {
1194  /* Download as many full pages as possible */
1195  this_npages = (count < buffer_size) ?
1197  buffer_size / FLASH_PAGE_SIZE;
1198  this_buffer = buffer;
1199 
1200  /* Make sure we stop at the next secured sector */
1201  unsigned int sector = start_sector + 1;
1202  while (sector < bank->num_sectors) {
1203  /* Secured? */
1204  if (bank->sectors[sector].is_protected) {
1205  /* Is that next sector within the current block? */
1206  if ((bank->sectors[sector].offset - bank->base) <
1207  (offset + (this_npages * FLASH_PAGE_SIZE))) {
1208  /* Yes! Split the block */
1209  this_npages =
1210  (bank->sectors[sector].offset -
1211  bank->base - offset)
1212  / FLASH_PAGE_SIZE;
1213  break;
1214  }
1215  }
1216 
1217  sector++;
1218  }
1219  }
1220 
1221  /* Skip the current sector if it is secured */
1222  if (bank->sectors[start_sector].is_protected) {
1223  LOG_DEBUG("Skip secured sector %u",
1224  start_sector);
1225 
1226  /* Stop if this is the last sector */
1227  if (start_sector == bank->num_sectors - 1)
1228  break;
1229 
1230  /* Skip */
1231  uint32_t nskip = bank->sectors[start_sector].size -
1232  (offset % bank->sectors[start_sector].size);
1233  offset += nskip;
1234  buffer += nskip;
1235  count = (count >= nskip) ? (count - nskip) : 0;
1236  continue;
1237  }
1238 
1239  /* Execute buffer download */
1240  retval = target_write_buffer(target, warea->address,
1241  this_npages * FLASH_PAGE_SIZE, this_buffer);
1242  if (retval != ERROR_OK) {
1243  LOG_ERROR("Unable to write data to target");
1246  }
1247 
1248  /* Prepare registers */
1249  buf_set_u32(reg_params[0].value, 0, 32, warea->address);
1250  buf_set_u32(reg_params[1].value, 0, 32, offset);
1251  buf_set_u32(reg_params[2].value, 0, 32, this_npages);
1252  buf_set_u32(reg_params[3].value, 0, 32, FCTR);
1253  buf_set_u32(reg_params[4].value, 0, 32, FPTR_EN_T | prog_time);
1254 
1255  /* Execute algorithm, assume breakpoint for last instruction */
1256  arm_algo.common_magic = ARM_COMMON_MAGIC;
1257  arm_algo.core_mode = ARM_MODE_SVC;
1258  arm_algo.core_state = ARM_STATE_ARM;
1259 
1260  retval = target_run_algorithm(target, 0, NULL, 5, reg_params,
1261  (warea->address) + buffer_size,
1262  (warea->address) + buffer_size + target_code_size - 4,
1263  10000, /* 10s should be enough for max. 16 KiB of data */
1264  &arm_algo);
1265 
1266  if (retval != ERROR_OK) {
1267  LOG_ERROR("Execution of flash algorithm failed.");
1270  break;
1271  }
1272 
1273  count -= this_npages * FLASH_PAGE_SIZE;
1274  buffer += this_npages * FLASH_PAGE_SIZE;
1275  offset += this_npages * FLASH_PAGE_SIZE;
1276  }
1277 
1278  /* Free all resources */
1279  destroy_reg_param(&reg_params[0]);
1280  destroy_reg_param(&reg_params[1]);
1281  destroy_reg_param(&reg_params[2]);
1282  destroy_reg_param(&reg_params[3]);
1283  destroy_reg_param(&reg_params[4]);
1285  } else {
1286  /* Write to flash memory page-wise */
1287  while (count != 0) {
1288  /* How many bytes do we copy this time? */
1289  num_bytes = (count >= FLASH_PAGE_SIZE) ?
1291  count;
1292 
1293  /* Don't do anything with it if the page is in a secured sector. */
1294  if (!bank->sectors[lpc2900_address2sector(bank, offset)].is_protected) {
1295  /* Set latch load mode */
1298 
1299  /* Always clear the buffer (a little overhead, but who cares) */
1300  memset(page, 0xFF, FLASH_PAGE_SIZE);
1301 
1302  /* Copy them to the buffer */
1303  memcpy(&page[offset % FLASH_PAGE_SIZE],
1305  num_bytes);
1306 
1307  /* Write whole page to flash data latches */
1309  bank->base + (offset - (offset % FLASH_PAGE_SIZE)),
1310  4, FLASH_PAGE_SIZE / 4, page) != ERROR_OK) {
1311  LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset);
1313 
1315  }
1316 
1317  /* Clear END_OF_BURN interrupt status */
1319 
1320  /* Set the programming time */
1321  target_write_u32(target, FPTR, FPTR_EN_T | prog_time);
1322 
1323  /* Trigger flash write */
1326 
1327  /* Wait for the end of the write operation. If it's not over
1328  * after one second, something went dreadfully wrong... :-(
1329  */
1331  LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset);
1333 
1335  }
1336  }
1337 
1338  /* Update pointers and counters */
1339  offset += num_bytes;
1340  buffer += num_bytes;
1341  count -= num_bytes;
1342  }
1343 
1344  retval = ERROR_OK;
1345  }
1346 
1347  /* Normal flash operating mode */
1349 
1350  return retval;
1351 }
1352 
1360 static int lpc2900_probe(struct flash_bank *bank)
1361 {
1362  struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
1363  struct target *target = bank->target;
1364  uint32_t offset;
1365 
1366 
1367  if (target->state != TARGET_HALTED) {
1368  LOG_ERROR("Target not halted");
1369  return ERROR_TARGET_NOT_HALTED;
1370  }
1371 
1372  /* We want to do this only once. */
1373  if (lpc2900_info->is_probed)
1374  return ERROR_OK;
1375 
1376  /* Probing starts with reading the CHIPID register. We will continue only
1377  * if this identifies as an LPC2900 device.
1378  */
1379  target_read_u32(target, CHIPID, &lpc2900_info->chipid);
1380 
1381  if (lpc2900_info->chipid != EXPECTED_CHIPID) {
1382  LOG_WARNING("Device is not an LPC29xx");
1384  }
1385 
1386  /* It's an LPC29xx device. Now read the feature register FEAT0...FEAT3. */
1387  uint32_t feat0, feat1, feat2, feat3;
1388  target_read_u32(target, FEAT0, &feat0);
1389  target_read_u32(target, FEAT1, &feat1);
1390  target_read_u32(target, FEAT2, &feat2);
1391  target_read_u32(target, FEAT3, &feat3);
1392 
1393  /* Base address */
1394  bank->base = 0x20000000;
1395 
1396  /* Determine flash layout from FEAT2 register */
1397  uint32_t num_64k_sectors = (feat2 >> 16) & 0xFF;
1398  uint32_t num_8k_sectors = (feat2 >> 0) & 0xFF;
1399  bank->num_sectors = num_64k_sectors + num_8k_sectors;
1400  bank->size = KiB * (64 * num_64k_sectors + 8 * num_8k_sectors);
1401 
1402  /* Determine maximum contiguous RAM block */
1403  lpc2900_info->max_ram_block = 16 * KiB;
1404  if ((feat1 & 0x30) == 0x30) {
1405  lpc2900_info->max_ram_block = 32 * KiB;
1406  if ((feat1 & 0x0C) == 0x0C)
1407  lpc2900_info->max_ram_block = 48 * KiB;
1408  }
1409 
1410  /* Determine package code and ITCM size */
1411  uint32_t package_code = feat0 & 0x0F;
1412  uint32_t itcm_code = (feat1 >> 16) & 0x1F;
1413 
1414  /* Determine the exact type number. */
1415  uint32_t found = 1;
1416  if ((package_code == 4) && (itcm_code == 5)) {
1417  /* Old LPC2917 or LPC2919 (non-/01 devices) */
1418  lpc2900_info->target_name = (bank->size == 768*KiB) ? "LPC2919" : "LPC2917";
1419  } else {
1420  if (package_code == 2) {
1421  /* 100-pin package */
1422  if (bank->size == 128*KiB)
1423  lpc2900_info->target_name = "LPC2921";
1424  else if (bank->size == 256*KiB)
1425  lpc2900_info->target_name = "LPC2923";
1426  else if (bank->size == 512*KiB)
1427  lpc2900_info->target_name = "LPC2925";
1428  else
1429  found = 0;
1430  } else if (package_code == 4) {
1431  /* 144-pin package */
1432  if ((bank->size == 256*KiB) && (feat3 == 0xFFFFFFE9))
1433  lpc2900_info->target_name = "LPC2926";
1434  else if ((bank->size == 512*KiB) && (feat3 == 0xFFFFFCF0))
1435  lpc2900_info->target_name = "LPC2917/01";
1436  else if ((bank->size == 512*KiB) && (feat3 == 0xFFFFFFF1))
1437  lpc2900_info->target_name = "LPC2927";
1438  else if ((bank->size == 768*KiB) && (feat3 == 0xFFFFFCF8))
1439  lpc2900_info->target_name = "LPC2919/01";
1440  else if ((bank->size == 768*KiB) && (feat3 == 0xFFFFFFF9))
1441  lpc2900_info->target_name = "LPC2929";
1442  else
1443  found = 0;
1444  } else if (package_code == 5) {
1445  /* 208-pin package */
1446  lpc2900_info->target_name = (bank->size == 0) ? "LPC2930" : "LPC2939";
1447  } else
1448  found = 0;
1449  }
1450 
1451  if (!found) {
1452  LOG_WARNING("Unknown LPC29xx derivative (FEATx="
1453  "%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ")",
1454  feat0, feat1, feat2, feat3);
1456  }
1457 
1458  /* Show detected device */
1459  LOG_INFO("Flash bank %u: Device %s, %" PRIu32
1460  " KiB in %u sectors",
1461  bank->bank_number,
1462  lpc2900_info->target_name, bank->size / KiB,
1463  bank->num_sectors);
1464 
1465  /* Flashless devices cannot be handled */
1466  if (bank->num_sectors == 0) {
1467  LOG_WARNING("Flashless device cannot be handled");
1469  }
1470 
1471  /* Sector layout.
1472  * These are logical sector numbers. When doing real flash operations,
1473  * the logical flash number are translated into the physical flash numbers
1474  * of the device.
1475  */
1476  bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
1477 
1478  offset = 0;
1479  for (unsigned int i = 0; i < bank->num_sectors; i++) {
1480  bank->sectors[i].offset = offset;
1481  bank->sectors[i].is_erased = -1;
1482  bank->sectors[i].is_protected = -1;
1483 
1484  if (i <= 7)
1485  bank->sectors[i].size = 8 * KiB;
1486  else if (i <= 18)
1487  bank->sectors[i].size = 64 * KiB;
1488  else {
1489  /* We shouldn't come here. But there might be a new part out there
1490  * that has more than 19 sectors. Politely ask for a fix then.
1491  */
1492  bank->sectors[i].size = 0;
1493  LOG_ERROR("Never heard about sector %u", i);
1494  }
1495 
1496  offset += bank->sectors[i].size;
1497  }
1498 
1499  lpc2900_info->is_probed = true;
1500 
1501  /* Read sector security status */
1503  LOG_ERROR("Cannot determine sector security status");
1505  }
1506 
1507  return ERROR_OK;
1508 }
1509 
1520 {
1521  uint32_t status = lpc2900_is_ready(bank);
1522  if (status != ERROR_OK) {
1523  LOG_INFO("Processor not halted/not probed");
1524  return status;
1525  }
1526 
1527  /* Use the BIST (Built-In Self Test) to generate a signature of each flash
1528  * sector. Compare against the expected signature of an empty sector.
1529  */
1530  for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
1531  uint32_t signature[4];
1532  status = lpc2900_run_bist128(bank, bank->sectors[sector].offset,
1533  bank->sectors[sector].offset + (bank->sectors[sector].size - 1), signature);
1534  if (status != ERROR_OK)
1535  return status;
1536 
1537  /* The expected signatures for an empty sector are different
1538  * for 8 KiB and 64 KiB sectors.
1539  */
1540  if (bank->sectors[sector].size == 8*KiB) {
1541  bank->sectors[sector].is_erased =
1542  (signature[3] == 0x01ABAAAA) &&
1543  (signature[2] == 0xAAAAAAAA) &&
1544  (signature[1] == 0xAAAAAAAA) &&
1545  (signature[0] == 0xAAA00AAA);
1546  }
1547  if (bank->sectors[sector].size == 64*KiB) {
1548  bank->sectors[sector].is_erased =
1549  (signature[3] == 0x11801222) &&
1550  (signature[2] == 0xB88844FF) &&
1551  (signature[1] == 0x11A22008) &&
1552  (signature[0] == 0x2B1BFE44);
1553  }
1554  }
1555 
1556  return ERROR_OK;
1557 }
1558 
1568 {
1570 }
1571 
1572 const struct flash_driver lpc2900_flash = {
1573  .name = "lpc2900",
1574  .commands = lpc2900_command_handlers,
1575  .flash_bank_command = lpc2900_flash_bank_command,
1576  .erase = lpc2900_erase,
1577  .write = lpc2900_write,
1578  .read = default_flash_read,
1579  .probe = lpc2900_probe,
1580  .auto_probe = lpc2900_probe,
1581  .erase_check = lpc2900_erase_check,
1582  .protect_check = lpc2900_protect_check,
1583  .free_driver_priv = default_flash_free_driver_priv,
1584 };
void init_reg_param(struct reg_param *param, char *reg_name, uint32_t size, enum param_direction direction)
Definition: algorithm.c:29
void destroy_reg_param(struct reg_param *param)
Definition: algorithm.c:37
@ PARAM_OUT
Definition: algorithm.h:16
Holds the interface to ARM cores.
#define ARM_COMMON_MAGIC
Definition: arm.h:165
@ ARM_MODE_SVC
Definition: arm.h:85
@ ARM_STATE_ARM
Definition: arm.h:150
Support functions to access arbitrary bits in a byte array.
static void buf_set_u32(uint8_t *_buffer, unsigned first, unsigned num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:31
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:443
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CALL_COMMAND_HANDLER(name, extra ...)
Use this to macro to call a command helper (or a nested handler).
Definition: command.h:118
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:402
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define COMMAND_PARSE_NUMBER(type, in, out)
parses the string in into out as a type, or prints a command error and passes the error code to the c...
Definition: command.h:442
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:253
#define ERROR_COMMAND_ARGUMENT_INVALID
Definition: command.h:404
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
uint8_t bank
Definition: esirisc.c:135
int mask
Definition: esirisc.c:1741
uint8_t type
Definition: esp_usb_jtag.c:0
#define ERROR_FLASH_BANK_INVALID
Definition: flash/common.h:28
#define ERROR_FLASH_SECTOR_INVALID
Definition: flash/common.h:29
#define ERROR_FLASH_BANK_NOT_PROBED
Definition: flash/common.h:35
#define ERROR_FLASH_OPERATION_FAILED
Definition: flash/common.h:30
int default_flash_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
Provides default read implementation for flash memory.
void default_flash_free_driver_priv(struct flash_bank *bank)
Deallocates bank->driver_priv.
int fileio_write(struct fileio *fileio, size_t size, const void *buffer, size_t *size_written)
int fileio_close(struct fileio *fileio)
int fileio_open(struct fileio **fileio, const char *url, enum fileio_access access_type, enum fileio_type type)
@ FILEIO_WRITE
Definition: helper/fileio.h:29
@ FILEIO_BINARY
Definition: helper/fileio.h:23
void image_close(struct image *image)
Definition: image.c:1211
int image_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read)
Definition: image.c:1079
int image_open(struct image *image, const char *url, const char *type_string)
Definition: image.c:957
void alive_sleep(uint64_t ms)
Definition: log.c:456
#define LOG_WARNING(expr ...)
Definition: log.h:129
#define LOG_ERROR(expr ...)
Definition: log.h:132
#define LOG_INFO(expr ...)
Definition: log.h:126
#define LOG_DEBUG(expr ...)
Definition: log.h:109
#define ERROR_OK
Definition: log.h:164
static int lpc2900_probe(struct flash_bank *bank)
Try and identify the device.
Definition: lpc2900.c:1360
#define FLASH_PROGRAM_TIME
Definition: lpc2900.c:24
static int lpc2900_write_index_page(struct flash_bank *bank, int pagenum, uint8_t page[FLASH_PAGE_SIZE])
Write one page to the index sector.
Definition: lpc2900.c:371
static uint32_t lpc2900_run_bist128(struct flash_bank *bank, uint32_t addr_from, uint32_t addr_to, uint32_t signature[4])
Use BIST to calculate a 128-bit hash value over a range of flash.
Definition: lpc2900.c:312
#define FCTR_FS_WEB
Definition: lpc2900.c:87
#define FCRA
Definition: lpc2900.c:40
#define INT_CLR_STATUS
Definition: lpc2900.c:64
#define FCTR_FS_WRE
Definition: lpc2900.c:88
static unsigned int lpc2900_address2sector(struct flash_bank *bank, uint32_t offset)
Return sector number for given address.
Definition: lpc2900.c:348
#define INTSRC_END_OF_ERASE
Definition: lpc2900.c:73
FLASH_BANK_COMMAND_HANDLER(lpc2900_flash_bank_command)
Evaluate flash bank command.
Definition: lpc2900.c:886
#define FEAT0
Definition: lpc2900.c:28
#define ISS_PASSWORD
#define FEAT1
Definition: lpc2900.c:29
static const struct command_registration lpc2900_command_handlers[]
Definition: lpc2900.c:874
static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var)
Calculate FPTR.TR register value for desired program/erase time.
Definition: lpc2900.c:448
#define FCTR_FS_WPB
Definition: lpc2900.c:83
static void lpc2900_setup(struct flash_bank *bank)
Set up the flash for erase/program operations.
Definition: lpc2900.c:208
const struct flash_driver lpc2900_flash
Definition: lpc2900.c:1572
#define FPTR
Definition: lpc2900.c:37
#define ISS_CUSTOMER_SIZE
Definition: lpc2900.c:109
#define FLASH_PAGE_SIZE
Definition: lpc2900.c:22
static uint32_t lpc2900_is_ready(struct flash_bank *bank)
Check if device is ready.
Definition: lpc2900.c:227
#define FCTR_FS_CS
Definition: lpc2900.c:89
#define INT_STATUS
Definition: lpc2900.c:62
static int lpc2900_erase(struct flash_bank *bank, unsigned int first, unsigned int last)
Erase sector(s).
Definition: lpc2900.c:935
#define ISS_CUSTOMER_SIZE2
Definition: lpc2900.c:107
#define FEAT2
Definition: lpc2900.c:30
#define FPTR_EN_T
Definition: lpc2900.c:91
#define FMSSTART
Definition: lpc2900.c:41
#define FMSW0
Definition: lpc2900.c:44
#define FLASH_ERASE_TIME
Definition: lpc2900.c:23
COMMAND_HANDLER(lpc2900_handle_signature_command)
Command to determine the signature of the whole flash.
Definition: lpc2900.c:469
#define ISS_CUSTOMER_SIZE1
Definition: lpc2900.c:103
#define FMSSTOP
Definition: lpc2900.c:42
#define ISS_CUSTOMER_START1
Definition: lpc2900.c:101
#define FMSSTOP_MISR_START
Definition: lpc2900.c:96
#define CHIPID
Definition: lpc2900.c:27
#define INTSRC_END_OF_BURN
Definition: lpc2900.c:72
static int lpc2900_erase_check(struct flash_bank *bank)
Run a blank check for each sector.
Definition: lpc2900.c:1519
#define EXPECTED_CHIPID
Definition: lpc2900.c:33
#define KiB
Definition: lpc2900.c:19
#define ISS_CUSTOMER_NWORDS1
Definition: lpc2900.c:104
static int lpc2900_protect_check(struct flash_bank *bank)
Get protection (sector security) status.
Definition: lpc2900.c:1567
#define ISS_CUSTOMER_START2
Definition: lpc2900.c:105
static uint32_t lpc2900_wait_status(struct flash_bank *bank, uint32_t mask, int timeout)
Wait for an event in mask to occur in INT_STATUS.
Definition: lpc2900.c:180
#define FEAT3
Definition: lpc2900.c:31
#define FCTR_FS_PROGREQ
Definition: lpc2900.c:79
#define INTSRC_END_OF_MISR
Definition: lpc2900.c:71
#define ISS_CUSTOMER_NWORDS2
Definition: lpc2900.c:108
static uint32_t lpc2900_read_security_status(struct flash_bank *bank)
Read the status of sector security from the index sector.
Definition: lpc2900.c:247
static const struct command_registration lpc2900_exec_command_handlers[]
Definition: lpc2900.c:824
#define FCTR_FS_LOADREQ
Definition: lpc2900.c:76
static int lpc2900_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
Write data to flash.
Definition: lpc2900.c:1045
#define FCTR
Definition: lpc2900.c:36
#define FCTR_FS_ISS
Definition: lpc2900.c:84
unsigned int common_magic
Definition: arm.h:273
enum arm_mode core_mode
Definition: arm.h:275
enum arm_state core_state
Definition: arm.h:276
const char * name
Definition: command.h:235
Provides details of a flash bank, available either on-chip or through a major interface.
Definition: nor/core.h:75
Provides the implementation-independent structure that defines all of the callbacks required by OpenO...
Definition: nor/driver.h:39
const char * name
Gives a human-readable name of this flash driver, This field is used to select and initialize the dri...
Definition: nor/driver.h:44
Describes the geometry and status of a single flash sector within a flash bank.
Definition: nor/core.h:28
Definition: image.h:48
unsigned int num_sections
Definition: image.h:51
bool start_address_set
Definition: image.h:55
struct imagesection * sections
Definition: image.h:52
long long base_address
Definition: image.h:54
bool base_address_set
Definition: image.h:53
target_addr_t base_address
Definition: image.h:42
uint32_t size
Definition: image.h:43
Private data for lpc2900 flash driver.
Definition: lpc2900.c:114
uint32_t max_ram_block
Maximum contiguous block of internal SRAM (bytes).
Definition: lpc2900.c:155
char * target_name
String holding device name.
Definition: lpc2900.c:133
uint32_t chipid
Holds the value read from CHIPID register.
Definition: lpc2900.c:126
uint32_t clk_sys_fmc
System clock frequency.
Definition: lpc2900.c:140
uint32_t risky
Flag to indicate that dangerous operations are possible.
Definition: lpc2900.c:148
bool is_probed
This flag is set when the device has been successfully probed.
Definition: lpc2900.c:118
Definition: target.h:116
enum target_state state
Definition: target.h:157
Definition: psoc6.c:84
target_addr_t address
Definition: target.h:86
void target_free_all_working_areas(struct target *target)
Definition: target.c:2150
int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
Definition: target.c:2342
int target_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Downloads a target-specific native code algorithm to the target, and executes it.
Definition: target.c:773
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1265
int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
Definition: target.c:2641
int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
Definition: target.c:1966
int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
Definition: target.c:2550
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1237
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
Definition: target.c:393
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
Definition: target.c:417
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:790
@ TARGET_HALTED
Definition: target.h:56
#define ARRAY_SIZE(x)
Compute the number of elements of a variable length array.
Definition: types.h:57
#define NULL
Definition: usb.h:16
uint8_t status[4]
Definition: vdebug.c:17
uint8_t offset[4]
Definition: vdebug.c:9
uint8_t count[4]
Definition: vdebug.c:22