OpenOCD
target/target.c
Go to the documentation of this file.
1 /***************************************************************************
2  * Copyright (C) 2005 by Dominic Rath *
3  * Dominic.Rath@gmx.de *
4  * *
5  * Copyright (C) 2007-2010 √ėyvind Harboe *
6  * oyvind.harboe@zylin.com *
7  * *
8  * Copyright (C) 2008, Duane Ellis *
9  * openocd@duaneeellis.com *
10  * *
11  * Copyright (C) 2008 by Spencer Oliver *
12  * spen@spen-soft.co.uk *
13  * *
14  * Copyright (C) 2008 by Rick Altherr *
15  * kc8apf@kc8apf.net> *
16  * *
17  * Copyright (C) 2011 by Broadcom Corporation *
18  * Evan Hunter - ehunter@broadcom.com *
19  * *
20  * Copyright (C) ST-Ericsson SA 2011 *
21  * michel.jaouen@stericsson.com : smp minimum support *
22  * *
23  * Copyright (C) 2011 Andreas Fritiofson *
24  * andreas.fritiofson@gmail.com *
25  * *
26  * This program is free software; you can redistribute it and/or modify *
27  * it under the terms of the GNU General Public License as published by *
28  * the Free Software Foundation; either version 2 of the License, or *
29  * (at your option) any later version. *
30  * *
31  * This program is distributed in the hope that it will be useful, *
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34  * GNU General Public License for more details. *
35  * *
36  * You should have received a copy of the GNU General Public License *
37  * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39 
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43 
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47 
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58 
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61 
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63  uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65  uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67  int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69  int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
72  struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74  int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 
111 static struct target_type *target_types[] = {
119  &fa526_target,
122  &xscale_target,
126  &arm11_target,
129  &avr_target,
132  &testee_target,
134  &hla_target,
138  &or1k_target,
141  &stm8_target,
142 #if BUILD_TARGET64
144 #endif
145  NULL,
146 };
147 
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
154 
155 static const Jim_Nvp nvp_assert[] = {
156  { .name = "assert", NVP_ASSERT },
157  { .name = "deassert", NVP_DEASSERT },
158  { .name = "T", NVP_ASSERT },
159  { .name = "F", NVP_DEASSERT },
160  { .name = "t", NVP_ASSERT },
161  { .name = "f", NVP_DEASSERT },
162  { .name = NULL, .value = -1 }
163 };
164 
165 static const Jim_Nvp nvp_error_target[] = {
166  { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167  { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168  { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169  { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170  { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171  { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
172  { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173  { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174  { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
175  { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176  { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177  { .value = -1, .name = NULL }
178 };
179 
180 static const char *target_strerror_safe(int err)
181 {
182  const Jim_Nvp *n;
183 
184  n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185  if (n->name == NULL)
186  return "unknown";
187  else
188  return n->name;
189 }
190 
191 static const Jim_Nvp nvp_target_event[] = {
192 
193  { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194  { .value = TARGET_EVENT_HALTED, .name = "halted" },
195  { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196  { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197  { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198 
199  { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200  { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201 
202  { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
203  { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
204  { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
205  { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
206  { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
207  { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208  { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
209  { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
210 
211  { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212  { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213 
214  { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215  { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216 
217  { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218  { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219 
220  { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221  { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
222 
223  { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224  { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
225 
226  { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227 
228  { .name = NULL, .value = -1 }
229 };
230 
231 static const Jim_Nvp nvp_target_state[] = {
232  { .name = "unknown", .value = TARGET_UNKNOWN },
233  { .name = "running", .value = TARGET_RUNNING },
234  { .name = "halted", .value = TARGET_HALTED },
235  { .name = "reset", .value = TARGET_RESET },
236  { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237  { .name = NULL, .value = -1 },
238 };
239 
241  { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
242  { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
243  { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
244  { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245  { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
246  { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
247  { .name = "program-exit" , .value = DBG_REASON_EXIT },
248  { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
249  { .name = NULL, .value = -1 },
250 };
251 
252 static const Jim_Nvp nvp_target_endian[] = {
253  { .name = "big", .value = TARGET_BIG_ENDIAN },
254  { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255  { .name = "be", .value = TARGET_BIG_ENDIAN },
256  { .name = "le", .value = TARGET_LITTLE_ENDIAN },
257  { .name = NULL, .value = -1 },
258 };
259 
260 static const Jim_Nvp nvp_reset_modes[] = {
261  { .name = "unknown", .value = RESET_UNKNOWN },
262  { .name = "run" , .value = RESET_RUN },
263  { .name = "halt" , .value = RESET_HALT },
264  { .name = "init" , .value = RESET_INIT },
265  { .name = NULL , .value = -1 },
266 };
267 
268 const char *debug_reason_name(struct target *t)
269 {
270  const char *cp;
271 
272  cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273  t->debug_reason)->name;
274  if (!cp) {
275  LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276  cp = "(*BUG*unknown*BUG*)";
277  }
278  return cp;
279 }
280 
281 const char *target_state_name(struct target *t)
282 {
283  const char *cp;
284  cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285  if (!cp) {
286  LOG_ERROR("Invalid target state: %d", (int)(t->state));
287  cp = "(*BUG*unknown*BUG*)";
288  }
289 
290  if (!target_was_examined(t) && t->defer_examine)
291  cp = "examine deferred";
292 
293  return cp;
294 }
295 
296 const char *target_event_name(enum target_event event)
297 {
298  const char *cp;
299  cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300  if (!cp) {
301  LOG_ERROR("Invalid target event: %d", (int)(event));
302  cp = "(*BUG*unknown*BUG*)";
303  }
304  return cp;
305 }
306 
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 {
309  const char *cp;
310  cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311  if (!cp) {
312  LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313  cp = "(*BUG*unknown*BUG*)";
314  }
315  return cp;
316 }
317 
318 /* determine the number of the new target */
319 static int new_target_number(void)
320 {
321  struct target *t;
322  int x;
323 
324  /* number is 0 based */
325  x = -1;
326  t = all_targets;
327  while (t) {
328  if (x < t->target_number)
329  x = t->target_number;
330  t = t->next;
331  }
332  return x + 1;
333 }
334 
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 {
338  if (target->endianness == TARGET_LITTLE_ENDIAN)
339  return le_to_h_u64(buffer);
340  else
341  return be_to_h_u64(buffer);
342 }
343 
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 {
347  if (target->endianness == TARGET_LITTLE_ENDIAN)
348  return le_to_h_u32(buffer);
349  else
350  return be_to_h_u32(buffer);
351 }
352 
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 {
356  if (target->endianness == TARGET_LITTLE_ENDIAN)
357  return le_to_h_u24(buffer);
358  else
359  return be_to_h_u24(buffer);
360 }
361 
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 {
365  if (target->endianness == TARGET_LITTLE_ENDIAN)
366  return le_to_h_u16(buffer);
367  else
368  return be_to_h_u16(buffer);
369 }
370 
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 {
374  return *buffer & 0x0ff;
375 }
376 
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 {
380  if (target->endianness == TARGET_LITTLE_ENDIAN)
381  h_u64_to_le(buffer, value);
382  else
383  h_u64_to_be(buffer, value);
384 }
385 
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 {
389  if (target->endianness == TARGET_LITTLE_ENDIAN)
390  h_u32_to_le(buffer, value);
391  else
392  h_u32_to_be(buffer, value);
393 }
394 
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 {
398  if (target->endianness == TARGET_LITTLE_ENDIAN)
399  h_u24_to_le(buffer, value);
400  else
401  h_u24_to_be(buffer, value);
402 }
403 
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 {
407  if (target->endianness == TARGET_LITTLE_ENDIAN)
408  h_u16_to_le(buffer, value);
409  else
410  h_u16_to_be(buffer, value);
411 }
412 
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 {
416  *buffer = value;
417 }
418 
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 {
422  uint32_t i;
423  for (i = 0; i < count; i++)
424  dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
425 }
426 
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 {
430  uint32_t i;
431  for (i = 0; i < count; i++)
432  dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
433 }
434 
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 {
438  uint32_t i;
439  for (i = 0; i < count; i++)
440  dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
441 }
442 
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 {
446  uint32_t i;
447  for (i = 0; i < count; i++)
448  target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
449 }
450 
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 {
454  uint32_t i;
455  for (i = 0; i < count; i++)
456  target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
457 }
458 
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 {
462  uint32_t i;
463  for (i = 0; i < count; i++)
464  target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
465 }
466 
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
469 {
470  struct target *target;
471 
472  /* try as tcltarget name */
473  for (target = all_targets; target; target = target->next) {
474  if (target_name(target) == NULL)
475  continue;
476  if (strcmp(id, target_name(target)) == 0)
477  return target;
478  }
479 
480  /* It's OK to remove this fallback sometime after August 2010 or so */
481 
482  /* no match, try as number */
483  unsigned num;
484  if (parse_uint(id, &num) != ERROR_OK)
485  return NULL;
486 
487  for (target = all_targets; target; target = target->next) {
488  if (target->target_number == (int)num) {
489  LOG_WARNING("use '%s' as target identifier, not '%u'",
490  target_name(target), num);
491  return target;
492  }
493  }
494 
495  return NULL;
496 }
497 
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
500 {
501  struct target *target = all_targets;
502 
503  while (target) {
504  if (target->target_number == num)
505  return target;
506  target = target->next;
507  }
508 
509  return NULL;
510 }
511 
512 struct target *get_current_target(struct command_context *cmd_ctx)
513 {
514  struct target *target = cmd_ctx->current_target_override
515  ? cmd_ctx->current_target_override
516  : cmd_ctx->current_target;
517 
518  if (target == NULL) {
519  LOG_ERROR("BUG: current_target out of bounds");
520  exit(-1);
521  }
522 
523  return target;
524 }
525 
527 {
528  int retval;
529 
530  /* We can't poll until after examine */
531  if (!target_was_examined(target)) {
532  /* Fail silently lest we pollute the log */
533  return ERROR_FAIL;
534  }
535 
536  retval = target->type->poll(target);
537  if (retval != ERROR_OK)
538  return retval;
539 
540  if (target->halt_issued) {
541  if (target->state == TARGET_HALTED)
542  target->halt_issued = false;
543  else {
544  int64_t t = timeval_ms() - target->halt_issued_time;
545  if (t > DEFAULT_HALT_TIMEOUT) {
546  target->halt_issued = false;
547  LOG_INFO("Halt timed out, wake up GDB.");
549  }
550  }
551  }
552 
553  return ERROR_OK;
554 }
555 
557 {
558  int retval;
559  /* We can't poll until after examine */
560  if (!target_was_examined(target)) {
561  LOG_ERROR("Target not examined yet");
562  return ERROR_FAIL;
563  }
564 
565  retval = target->type->halt(target);
566  if (retval != ERROR_OK)
567  return retval;
568 
569  target->halt_issued = true;
570  target->halt_issued_time = timeval_ms();
571 
572  return ERROR_OK;
573 }
574 
605 int target_resume(struct target *target, int current, target_addr_t address,
606  int handle_breakpoints, int debug_execution)
607 {
608  int retval;
609 
610  /* We can't poll until after examine */
611  if (!target_was_examined(target)) {
612  LOG_ERROR("Target not examined yet");
613  return ERROR_FAIL;
614  }
615 
617 
618  /* note that resume *must* be asynchronous. The CPU can halt before
619  * we poll. The CPU can even halt at the current PC as a result of
620  * a software breakpoint being inserted by (a bug?) the application.
621  */
622  retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623  if (retval != ERROR_OK)
624  return retval;
625 
627 
628  return retval;
629 }
630 
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 {
633  char buf[100];
634  int retval;
635  Jim_Nvp *n;
636  n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637  if (n->name == NULL) {
638  LOG_ERROR("invalid reset mode");
639  return ERROR_FAIL;
640  }
641 
642  struct target *target;
643  for (target = all_targets; target; target = target->next)
644  target_call_reset_callbacks(target, reset_mode);
645 
646  /* disable polling during reset to make reset event scripts
647  * more predictable, i.e. dr/irscan & pathmove in events will
648  * not have JTAG operations injected into the middle of a sequence.
649  */
650  bool save_poll = jtag_poll_get_enabled();
651 
652  jtag_poll_set_enabled(false);
653 
654  sprintf(buf, "ocd_process_reset %s", n->name);
655  retval = Jim_Eval(cmd_ctx->interp, buf);
656 
657  jtag_poll_set_enabled(save_poll);
658 
659  if (retval != JIM_OK) {
660  Jim_MakeErrorMessage(cmd_ctx->interp);
661  command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662  return ERROR_FAIL;
663  }
664 
665  /* We want any events to be processed before the prompt */
667 
668  for (target = all_targets; target; target = target->next) {
669  target->type->check_reset(target);
670  target->running_alg = false;
671  }
672 
673  return retval;
674 }
675 
676 static int identity_virt2phys(struct target *target,
677  target_addr_t virtual, target_addr_t *physical)
678 {
679  *physical = virtual;
680  return ERROR_OK;
681 }
682 
683 static int no_mmu(struct target *target, int *enabled)
684 {
685  *enabled = 0;
686  return ERROR_OK;
687 }
688 
689 static int default_examine(struct target *target)
690 {
691  target_set_examined(target);
692  return ERROR_OK;
693 }
694 
695 /* no check by default */
696 static int default_check_reset(struct target *target)
697 {
698  return ERROR_OK;
699 }
700 
702 {
704 
705  int retval = target->type->examine(target);
706  if (retval != ERROR_OK)
707  return retval;
708 
710 
711  return ERROR_OK;
712 }
713 
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 {
716  struct target *target = priv;
717 
718  if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719  return ERROR_OK;
720 
722 
723  return target_examine_one(target);
724 }
725 
726 /* Targets that correctly implement init + examine, i.e.
727  * no communication with target during init:
728  *
729  * XScale
730  */
731 int target_examine(void)
732 {
733  int retval = ERROR_OK;
734  struct target *target;
735 
736  for (target = all_targets; target; target = target->next) {
737  /* defer examination, but don't skip it */
738  if (!target->tap->enabled) {
740  target);
741  continue;
742  }
743 
744  if (target->defer_examine)
745  continue;
746 
747  retval = target_examine_one(target);
748  if (retval != ERROR_OK)
749  return retval;
750  }
751  return retval;
752 }
753 
754 const char *target_type_name(struct target *target)
755 {
756  return target->type->name;
757 }
758 
760 {
761  if (!target_was_examined(target)) {
762  LOG_ERROR("Target not examined yet");
763  return ERROR_FAIL;
764  }
765  if (!target->type->soft_reset_halt) {
766  LOG_ERROR("Target %s does not support soft_reset_halt",
767  target_name(target));
768  return ERROR_FAIL;
769  }
770  return target->type->soft_reset_halt(target);
771 }
772 
785  int num_mem_params, struct mem_param *mem_params,
786  int num_reg_params, struct reg_param *reg_param,
787  uint32_t entry_point, uint32_t exit_point,
788  int timeout_ms, void *arch_info)
789 {
790  int retval = ERROR_FAIL;
791 
792  if (!target_was_examined(target)) {
793  LOG_ERROR("Target not examined yet");
794  goto done;
795  }
796  if (!target->type->run_algorithm) {
797  LOG_ERROR("Target type '%s' does not support %s",
798  target_type_name(target), __func__);
799  goto done;
800  }
801 
802  target->running_alg = true;
803  retval = target->type->run_algorithm(target,
804  num_mem_params, mem_params,
805  num_reg_params, reg_param,
806  entry_point, exit_point, timeout_ms, arch_info);
807  target->running_alg = false;
808 
809 done:
810  return retval;
811 }
812 
820  int num_mem_params, struct mem_param *mem_params,
821  int num_reg_params, struct reg_param *reg_params,
822  uint32_t entry_point, uint32_t exit_point,
823  void *arch_info)
824 {
825  int retval = ERROR_FAIL;
826 
827  if (!target_was_examined(target)) {
828  LOG_ERROR("Target not examined yet");
829  goto done;
830  }
831  if (!target->type->start_algorithm) {
832  LOG_ERROR("Target type '%s' does not support %s",
833  target_type_name(target), __func__);
834  goto done;
835  }
836  if (target->running_alg) {
837  LOG_ERROR("Target is already running an algorithm");
838  goto done;
839  }
840 
841  target->running_alg = true;
842  retval = target->type->start_algorithm(target,
843  num_mem_params, mem_params,
844  num_reg_params, reg_params,
845  entry_point, exit_point, arch_info);
846 
847 done:
848  return retval;
849 }
850 
858  int num_mem_params, struct mem_param *mem_params,
859  int num_reg_params, struct reg_param *reg_params,
860  uint32_t exit_point, int timeout_ms,
861  void *arch_info)
862 {
863  int retval = ERROR_FAIL;
864 
865  if (!target->type->wait_algorithm) {
866  LOG_ERROR("Target type '%s' does not support %s",
867  target_type_name(target), __func__);
868  goto done;
869  }
870  if (!target->running_alg) {
871  LOG_ERROR("Target is not running an algorithm");
872  goto done;
873  }
874 
875  retval = target->type->wait_algorithm(target,
876  num_mem_params, mem_params,
877  num_reg_params, reg_params,
878  exit_point, timeout_ms, arch_info);
879  if (retval != ERROR_TARGET_TIMEOUT)
880  target->running_alg = false;
881 
882 done:
883  return retval;
884 }
885 
929  const uint8_t *buffer, uint32_t count, int block_size,
930  int num_mem_params, struct mem_param *mem_params,
931  int num_reg_params, struct reg_param *reg_params,
932  uint32_t buffer_start, uint32_t buffer_size,
933  uint32_t entry_point, uint32_t exit_point, void *arch_info)
934 {
935  int retval;
936  int timeout = 0;
937 
938  const uint8_t *buffer_orig = buffer;
939 
940  /* Set up working area. First word is write pointer, second word is read pointer,
941  * rest is fifo data area. */
942  uint32_t wp_addr = buffer_start;
943  uint32_t rp_addr = buffer_start + 4;
944  uint32_t fifo_start_addr = buffer_start + 8;
945  uint32_t fifo_end_addr = buffer_start + buffer_size;
946 
947  uint32_t wp = fifo_start_addr;
948  uint32_t rp = fifo_start_addr;
949 
950  /* validate block_size is 2^n */
951  assert(!block_size || !(block_size & (block_size - 1)));
952 
953  retval = target_write_u32(target, wp_addr, wp);
954  if (retval != ERROR_OK)
955  return retval;
956  retval = target_write_u32(target, rp_addr, rp);
957  if (retval != ERROR_OK)
958  return retval;
959 
960  /* Start up algorithm on target and let it idle while writing the first chunk */
961  retval = target_start_algorithm(target, num_mem_params, mem_params,
962  num_reg_params, reg_params,
963  entry_point,
964  exit_point,
965  arch_info);
966 
967  if (retval != ERROR_OK) {
968  LOG_ERROR("error starting target flash write algorithm");
969  return retval;
970  }
971 
972  while (count > 0) {
973 
974  retval = target_read_u32(target, rp_addr, &rp);
975  if (retval != ERROR_OK) {
976  LOG_ERROR("failed to get read pointer");
977  break;
978  }
979 
980  LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981  (size_t) (buffer - buffer_orig), count, wp, rp);
982 
983  if (rp == 0) {
984  LOG_ERROR("flash write algorithm aborted by target");
986  break;
987  }
988 
989  if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990  LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991  break;
992  }
993 
994  /* Count the number of bytes available in the fifo without
995  * crossing the wrap around. Make sure to not fill it completely,
996  * because that would make wp == rp and that's the empty condition. */
997  uint32_t thisrun_bytes;
998  if (rp > wp)
999  thisrun_bytes = rp - wp - block_size;
1000  else if (rp > fifo_start_addr)
1001  thisrun_bytes = fifo_end_addr - wp;
1002  else
1003  thisrun_bytes = fifo_end_addr - wp - block_size;
1004 
1005  if (thisrun_bytes == 0) {
1006  /* Throttle polling a bit if transfer is (much) faster than flash
1007  * programming. The exact delay shouldn't matter as long as it's
1008  * less than buffer size / flash speed. This is very unlikely to
1009  * run when using high latency connections such as USB. */
1010  alive_sleep(10);
1011 
1012  /* to stop an infinite loop on some targets check and increment a timeout
1013  * this issue was observed on a stellaris using the new ICDI interface */
1014  if (timeout++ >= 500) {
1015  LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1017  }
1018  continue;
1019  }
1020 
1021  /* reset our timeout */
1022  timeout = 0;
1023 
1024  /* Limit to the amount of data we actually want to write */
1025  if (thisrun_bytes > count * block_size)
1026  thisrun_bytes = count * block_size;
1027 
1028  /* Write data to fifo */
1029  retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030  if (retval != ERROR_OK)
1031  break;
1032 
1033  /* Update counters and wrap write pointer */
1034  buffer += thisrun_bytes;
1035  count -= thisrun_bytes / block_size;
1036  wp += thisrun_bytes;
1037  if (wp >= fifo_end_addr)
1038  wp = fifo_start_addr;
1039 
1040  /* Store updated write pointer to target */
1041  retval = target_write_u32(target, wp_addr, wp);
1042  if (retval != ERROR_OK)
1043  break;
1044  }
1045 
1046  if (retval != ERROR_OK) {
1047  /* abort flash write algorithm on target */
1048  target_write_u32(target, wp_addr, 0);
1049  }
1050 
1051  int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052  num_reg_params, reg_params,
1053  exit_point,
1054  10000,
1055  arch_info);
1056 
1057  if (retval2 != ERROR_OK) {
1058  LOG_ERROR("error waiting for target flash write algorithm");
1059  retval = retval2;
1060  }
1061 
1062  if (retval == ERROR_OK) {
1063  /* check if algorithm set rp = 0 after fifo writer loop finished */
1064  retval = target_read_u32(target, rp_addr, &rp);
1065  if (retval == ERROR_OK && rp == 0) {
1066  LOG_ERROR("flash write algorithm aborted by target");
1068  }
1069  }
1070 
1071  return retval;
1072 }
1073 
1075  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1076 {
1077  if (!target_was_examined(target)) {
1078  LOG_ERROR("Target not examined yet");
1079  return ERROR_FAIL;
1080  }
1081  if (!target->type->read_memory) {
1082  LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083  return ERROR_FAIL;
1084  }
1085  return target->type->read_memory(target, address, size, count, buffer);
1086 }
1087 
1089  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091  if (!target_was_examined(target)) {
1092  LOG_ERROR("Target not examined yet");
1093  return ERROR_FAIL;
1094  }
1095  if (!target->type->read_phys_memory) {
1096  LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097  return ERROR_FAIL;
1098  }
1099  return target->type->read_phys_memory(target, address, size, count, buffer);
1100 }
1101 
1103  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1104 {
1105  if (!target_was_examined(target)) {
1106  LOG_ERROR("Target not examined yet");
1107  return ERROR_FAIL;
1108  }
1109  if (!target->type->write_memory) {
1110  LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111  return ERROR_FAIL;
1112  }
1113  return target->type->write_memory(target, address, size, count, buffer);
1114 }
1115 
1117  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119  if (!target_was_examined(target)) {
1120  LOG_ERROR("Target not examined yet");
1121  return ERROR_FAIL;
1122  }
1123  if (!target->type->write_phys_memory) {
1124  LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125  return ERROR_FAIL;
1126  }
1127  return target->type->write_phys_memory(target, address, size, count, buffer);
1128 }
1129 
1131  struct breakpoint *breakpoint)
1132 {
1133  if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134  LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135  return ERROR_TARGET_NOT_HALTED;
1136  }
1137  return target->type->add_breakpoint(target, breakpoint);
1138 }
1139 
1141  struct breakpoint *breakpoint)
1142 {
1143  if (target->state != TARGET_HALTED) {
1144  LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145  return ERROR_TARGET_NOT_HALTED;
1146  }
1147  return target->type->add_context_breakpoint(target, breakpoint);
1148 }
1149 
1151  struct breakpoint *breakpoint)
1152 {
1153  if (target->state != TARGET_HALTED) {
1154  LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155  return ERROR_TARGET_NOT_HALTED;
1156  }
1157  return target->type->add_hybrid_breakpoint(target, breakpoint);
1158 }
1159 
1161  struct breakpoint *breakpoint)
1162 {
1163  return target->type->remove_breakpoint(target, breakpoint);
1164 }
1165 
1167  struct watchpoint *watchpoint)
1168 {
1169  if (target->state != TARGET_HALTED) {
1170  LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171  return ERROR_TARGET_NOT_HALTED;
1172  }
1173  return target->type->add_watchpoint(target, watchpoint);
1174 }
1176  struct watchpoint *watchpoint)
1177 {
1178  return target->type->remove_watchpoint(target, watchpoint);
1179 }
1181  struct watchpoint **hit_watchpoint)
1182 {
1183  if (target->state != TARGET_HALTED) {
1184  LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185  return ERROR_TARGET_NOT_HALTED;
1186  }
1187 
1188  if (target->type->hit_watchpoint == NULL) {
1189  /* For backward compatible, if hit_watchpoint is not implemented,
1190  * return ERROR_FAIL such that gdb_server will not take the nonsense
1191  * information. */
1192  return ERROR_FAIL;
1193  }
1194 
1195  return target->type->hit_watchpoint(target, hit_watchpoint);
1196 }
1197 
1199  struct reg **reg_list[], int *reg_list_size,
1200  enum target_register_class reg_class)
1201 {
1202  return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1203 }
1205  int current, target_addr_t address, int handle_breakpoints)
1206 {
1207  return target->type->step(target, current, address, handle_breakpoints);
1208 }
1209 
1211 {
1212  if (target->state != TARGET_HALTED) {
1213  LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214  return ERROR_TARGET_NOT_HALTED;
1215  }
1216  return target->type->get_gdb_fileio_info(target, fileio_info);
1217 }
1218 
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1220 {
1221  if (target->state != TARGET_HALTED) {
1222  LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223  return ERROR_TARGET_NOT_HALTED;
1224  }
1225  return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1226 }
1227 
1228 int target_profiling(struct target *target, uint32_t *samples,
1229  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1230 {
1231  if (target->state != TARGET_HALTED) {
1232  LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233  return ERROR_TARGET_NOT_HALTED;
1234  }
1235  return target->type->profiling(target, samples, max_num_samples,
1236  num_samples, seconds);
1237 }
1238 
1244 {
1245  target->examined = false;
1246 }
1247 
1248 static int handle_target(void *priv);
1249 
1250 static int target_init_one(struct command_context *cmd_ctx,
1251  struct target *target)
1252 {
1253  target_reset_examined(target);
1254 
1255  struct target_type *type = target->type;
1256  if (type->examine == NULL)
1257  type->examine = default_examine;
1258 
1259  if (type->check_reset == NULL)
1261 
1262  assert(type->init_target != NULL);
1263 
1264  int retval = type->init_target(cmd_ctx, target);
1265  if (ERROR_OK != retval) {
1266  LOG_ERROR("target '%s' init failed", target_name(target));
1267  return retval;
1268  }
1269 
1270  /* Sanity-check MMU support ... stub in what we must, to help
1271  * implement it in stages, but warn if we need to do so.
1272  */
1273  if (type->mmu) {
1274  if (type->virt2phys == NULL) {
1275  LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276  type->virt2phys = identity_virt2phys;
1277  }
1278  } else {
1279  /* Make sure no-MMU targets all behave the same: make no
1280  * distinction between physical and virtual addresses, and
1281  * ensure that virt2phys() is always an identity mapping.
1282  */
1283  if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284  LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1285 
1286  type->mmu = no_mmu;
1287  type->write_phys_memory = type->write_memory;
1288  type->read_phys_memory = type->read_memory;
1289  type->virt2phys = identity_virt2phys;
1290  }
1291 
1292  if (target->type->read_buffer == NULL)
1294 
1295  if (target->type->write_buffer == NULL)
1297 
1298  if (target->type->get_gdb_fileio_info == NULL)
1300 
1301  if (target->type->gdb_fileio_end == NULL)
1303 
1304  if (target->type->profiling == NULL)
1306 
1307  return ERROR_OK;
1308 }
1309 
1310 static int target_init(struct command_context *cmd_ctx)
1311 {
1312  struct target *target;
1313  int retval;
1314 
1315  for (target = all_targets; target; target = target->next) {
1316  retval = target_init_one(cmd_ctx, target);
1317  if (ERROR_OK != retval)
1318  return retval;
1319  }
1320 
1321  if (!all_targets)
1322  return ERROR_OK;
1323 
1324  retval = target_register_user_commands(cmd_ctx);
1325  if (ERROR_OK != retval)
1326  return retval;
1327 
1329  polling_interval, 1, cmd_ctx->interp);
1330  if (ERROR_OK != retval)
1331  return retval;
1332 
1333  return ERROR_OK;
1334 }
1335 
1336 COMMAND_HANDLER(handle_target_init_command)
1337 {
1338  int retval;
1339 
1340  if (CMD_ARGC != 0)
1342 
1343  static bool target_initialized;
1344  if (target_initialized) {
1345  LOG_INFO("'target init' has already been called");
1346  return ERROR_OK;
1347  }
1348  target_initialized = true;
1349 
1350  retval = command_run_line(CMD_CTX, "init_targets");
1351  if (ERROR_OK != retval)
1352  return retval;
1353 
1354  retval = command_run_line(CMD_CTX, "init_target_events");
1355  if (ERROR_OK != retval)
1356  return retval;
1357 
1358  retval = command_run_line(CMD_CTX, "init_board");
1359  if (ERROR_OK != retval)
1360  return retval;
1361 
1362  LOG_DEBUG("Initializing targets...");
1363  return target_init(CMD_CTX);
1364 }
1365 
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367  enum target_event event, void *priv), void *priv)
1368 {
1369  struct target_event_callback **callbacks_p = &target_event_callbacks;
1370 
1371  if (callback == NULL)
1373 
1374  if (*callbacks_p) {
1375  while ((*callbacks_p)->next)
1376  callbacks_p = &((*callbacks_p)->next);
1377  callbacks_p = &((*callbacks_p)->next);
1378  }
1379 
1380  (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381  (*callbacks_p)->callback = callback;
1382  (*callbacks_p)->priv = priv;
1383  (*callbacks_p)->next = NULL;
1384 
1385  return ERROR_OK;
1386 }
1387 
1389  enum target_reset_mode reset_mode, void *priv), void *priv)
1390 {
1391  struct target_reset_callback *entry;
1392 
1393  if (callback == NULL)
1395 
1396  entry = malloc(sizeof(struct target_reset_callback));
1397  if (entry == NULL) {
1398  LOG_ERROR("error allocating buffer for reset callback entry");
1400  }
1401 
1402  entry->callback = callback;
1403  entry->priv = priv;
1404  list_add(&entry->list, &target_reset_callback_list);
1405 
1406 
1407  return ERROR_OK;
1408 }
1409 
1411  size_t len, uint8_t *data, void *priv), void *priv)
1412 {
1413  struct target_trace_callback *entry;
1414 
1415  if (callback == NULL)
1417 
1418  entry = malloc(sizeof(struct target_trace_callback));
1419  if (entry == NULL) {
1420  LOG_ERROR("error allocating buffer for trace callback entry");
1422  }
1423 
1424  entry->callback = callback;
1425  entry->priv = priv;
1426  list_add(&entry->list, &target_trace_callback_list);
1427 
1428 
1429  return ERROR_OK;
1430 }
1431 
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1433 {
1434  struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1435 
1436  if (callback == NULL)
1438 
1439  if (*callbacks_p) {
1440  while ((*callbacks_p)->next)
1441  callbacks_p = &((*callbacks_p)->next);
1442  callbacks_p = &((*callbacks_p)->next);
1443  }
1444 
1445  (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446  (*callbacks_p)->callback = callback;
1447  (*callbacks_p)->periodic = periodic;
1448  (*callbacks_p)->time_ms = time_ms;
1449  (*callbacks_p)->removed = false;
1450 
1451  gettimeofday(&(*callbacks_p)->when, NULL);
1452  timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1453 
1454  (*callbacks_p)->priv = priv;
1455  (*callbacks_p)->next = NULL;
1456 
1457  return ERROR_OK;
1458 }
1459 
1461  enum target_event event, void *priv), void *priv)
1462 {
1465 
1466  if (callback == NULL)
1468 
1469  while (c) {
1470  struct target_event_callback *next = c->next;
1471  if ((c->callback == callback) && (c->priv == priv)) {
1472  *p = next;
1473  free(c);
1474  return ERROR_OK;
1475  } else
1476  p = &(c->next);
1477  c = next;
1478  }
1479 
1480  return ERROR_OK;
1481 }
1482 
1484  enum target_reset_mode reset_mode, void *priv), void *priv)
1485 {
1486  struct target_reset_callback *entry;
1487 
1488  if (callback == NULL)
1490 
1491  list_for_each_entry(entry, &target_reset_callback_list, list) {
1492  if (entry->callback == callback && entry->priv == priv) {
1493  list_del(&entry->list);
1494  free(entry);
1495  break;
1496  }
1497  }
1498 
1499  return ERROR_OK;
1500 }
1501 
1503  size_t len, uint8_t *data, void *priv), void *priv)
1504 {
1505  struct target_trace_callback *entry;
1506 
1507  if (callback == NULL)
1509 
1510  list_for_each_entry(entry, &target_trace_callback_list, list) {
1511  if (entry->callback == callback && entry->priv == priv) {
1512  list_del(&entry->list);
1513  free(entry);
1514  break;
1515  }
1516  }
1517 
1518  return ERROR_OK;
1519 }
1520 
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1522 {
1523  if (callback == NULL)
1525 
1526  for (struct target_timer_callback *c = target_timer_callbacks;
1527  c; c = c->next) {
1528  if ((c->callback == callback) && (c->priv == priv)) {
1529  c->removed = true;
1530  return ERROR_OK;
1531  }
1532  }
1533 
1534  return ERROR_FAIL;
1535 }
1536 
1538 {
1540  struct target_event_callback *next_callback;
1541 
1542  if (event == TARGET_EVENT_HALTED) {
1543  /* execute early halted first */
1545  }
1546 
1547  LOG_DEBUG("target event %i (%s)", event,
1548  Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1549 
1550  target_handle_event(target, event);
1551 
1552  while (callback) {
1553  next_callback = callback->next;
1554  callback->callback(target, event, callback->priv);
1555  callback = next_callback;
1556  }
1557 
1558  return ERROR_OK;
1559 }
1560 
1562 {
1564 
1565  LOG_DEBUG("target reset %i (%s)", reset_mode,
1566  Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1567 
1568  list_for_each_entry(callback, &target_reset_callback_list, list)
1569  callback->callback(target, reset_mode, callback->priv);
1570 
1571  return ERROR_OK;
1572 }
1573 
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1575 {
1577 
1578  list_for_each_entry(callback, &target_trace_callback_list, list)
1579  callback->callback(target, len, data, callback->priv);
1580 
1581  return ERROR_OK;
1582 }
1583 
1585  struct target_timer_callback *cb, struct timeval *now)
1586 {
1587  cb->when = *now;
1588  timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589  return ERROR_OK;
1590 }
1591 
1593  struct timeval *now)
1594 {
1595  cb->callback(cb->priv);
1596 
1597  if (cb->periodic)
1599 
1601 }
1602 
1604 {
1605  static bool callback_processing;
1606 
1607  /* Do not allow nesting */
1608  if (callback_processing)
1609  return ERROR_OK;
1610 
1611  callback_processing = true;
1612 
1613  keep_alive();
1614 
1615  struct timeval now;
1616  gettimeofday(&now, NULL);
1617 
1618  /* Store an address of the place containing a pointer to the
1619  * next item; initially, that's a standalone "root of the
1620  * list" variable. */
1622  while (*callback) {
1623  if ((*callback)->removed) {
1624  struct target_timer_callback *p = *callback;
1625  *callback = (*callback)->next;
1626  free(p);
1627  continue;
1628  }
1629 
1630  bool call_it = (*callback)->callback &&
1631  ((!checktime && (*callback)->periodic) ||
1632  timeval_compare(&now, &(*callback)->when) >= 0);
1633 
1634  if (call_it)
1635  target_call_timer_callback(*callback, &now);
1636 
1637  callback = &(*callback)->next;
1638  }
1639 
1640  callback_processing = false;
1641  return ERROR_OK;
1642 }
1643 
1645 {
1647 }
1648 
1649 /* invoke periodic callbacks immediately */
1651 {
1653 }
1654 
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1657 {
1658  struct working_area *c = target->working_areas;
1659 
1660  while (c) {
1661  LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662  c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663  c->address, c->address + c->size - 1, c->size);
1664  c = c->next;
1665  }
1666 }
1667 
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1670 {
1671  assert(area->free); /* Shouldn't split an allocated area */
1672  assert(size <= area->size); /* Caller should guarantee this */
1673 
1674  /* Split only if not already the right size */
1675  if (size < area->size) {
1676  struct working_area *new_wa = malloc(sizeof(*new_wa));
1677 
1678  if (new_wa == NULL)
1679  return;
1680 
1681  new_wa->next = area->next;
1682  new_wa->size = area->size - size;
1683  new_wa->address = area->address + size;
1684  new_wa->backup = NULL;
1685  new_wa->user = NULL;
1686  new_wa->free = true;
1687 
1688  area->next = new_wa;
1689  area->size = size;
1690 
1691  /* If backup memory was allocated to this area, it has the wrong size
1692  * now so free it and it will be reallocated if/when needed */
1693  if (area->backup) {
1694  free(area->backup);
1695  area->backup = NULL;
1696  }
1697  }
1698 }
1699 
1700 /* Merge all adjacent free areas into one */
1702 {
1703  struct working_area *c = target->working_areas;
1704 
1705  while (c && c->next) {
1706  assert(c->next->address == c->address + c->size); /* This is an invariant */
1707 
1708  /* Find two adjacent free areas */
1709  if (c->free && c->next->free) {
1710  /* Merge the last into the first */
1711  c->size += c->next->size;
1712 
1713  /* Remove the last */
1714  struct working_area *to_be_freed = c->next;
1715  c->next = c->next->next;
1716  if (to_be_freed->backup)
1717  free(to_be_freed->backup);
1718  free(to_be_freed);
1719 
1720  /* If backup memory was allocated to the remaining area, it's has
1721  * the wrong size now */
1722  if (c->backup) {
1723  free(c->backup);
1724  c->backup = NULL;
1725  }
1726  } else {
1727  c = c->next;
1728  }
1729  }
1730 }
1731 
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1733 {
1734  /* Reevaluate working area address based on MMU state*/
1735  if (target->working_areas == NULL) {
1736  int retval;
1737  int enabled;
1738 
1739  retval = target->type->mmu(target, &enabled);
1740  if (retval != ERROR_OK)
1741  return retval;
1742 
1743  if (!enabled) {
1744  if (target->working_area_phys_spec) {
1745  LOG_DEBUG("MMU disabled, using physical "
1746  "address for working memory " TARGET_ADDR_FMT,
1747  target->working_area_phys);
1748  target->working_area = target->working_area_phys;
1749  } else {
1750  LOG_ERROR("No working memory available. "
1751  "Specify -work-area-phys to target.");
1753  }
1754  } else {
1755  if (target->working_area_virt_spec) {
1756  LOG_DEBUG("MMU enabled, using virtual "
1757  "address for working memory " TARGET_ADDR_FMT,
1758  target->working_area_virt);
1759  target->working_area = target->working_area_virt;
1760  } else {
1761  LOG_ERROR("No working memory available. "
1762  "Specify -work-area-virt to target.");
1764  }
1765  }
1766 
1767  /* Set up initial working area on first call */
1768  struct working_area *new_wa = malloc(sizeof(*new_wa));
1769  if (new_wa) {
1770  new_wa->next = NULL;
1771  new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772  new_wa->address = target->working_area;
1773  new_wa->backup = NULL;
1774  new_wa->user = NULL;
1775  new_wa->free = true;
1776  }
1777 
1778  target->working_areas = new_wa;
1779  }
1780 
1781  /* only allocate multiples of 4 byte */
1782  if (size % 4)
1783  size = (size + 3) & (~3UL);
1784 
1785  struct working_area *c = target->working_areas;
1786 
1787  /* Find the first large enough working area */
1788  while (c) {
1789  if (c->free && c->size >= size)
1790  break;
1791  c = c->next;
1792  }
1793 
1794  if (c == NULL)
1796 
1797  /* Split the working area into the requested size */
1798  target_split_working_area(c, size);
1799 
1800  LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801  size, c->address);
1802 
1803  if (target->backup_working_area) {
1804  if (c->backup == NULL) {
1805  c->backup = malloc(c->size);
1806  if (c->backup == NULL)
1807  return ERROR_FAIL;
1808  }
1809 
1810  int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811  if (retval != ERROR_OK)
1812  return retval;
1813  }
1814 
1815  /* mark as used, and return the new (reused) area */
1816  c->free = false;
1817  *area = c;
1818 
1819  /* user pointer */
1820  c->user = area;
1821 
1822  print_wa_layout(target);
1823 
1824  return ERROR_OK;
1825 }
1826 
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1828 {
1829  int retval;
1830 
1831  retval = target_alloc_working_area_try(target, size, area);
1833  LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834  return retval;
1835 
1836 }
1837 
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1839 {
1840  int retval = ERROR_OK;
1841 
1842  if (target->backup_working_area && area->backup != NULL) {
1843  retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844  if (retval != ERROR_OK)
1845  LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846  area->size, area->address);
1847  }
1848 
1849  return retval;
1850 }
1851 
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1854 {
1855  int retval = ERROR_OK;
1856 
1857  if (area->free)
1858  return retval;
1859 
1860  if (restore) {
1861  retval = target_restore_working_area(target, area);
1862  /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863  if (retval != ERROR_OK)
1864  return retval;
1865  }
1866 
1867  area->free = true;
1868 
1869  LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870  area->size, area->address);
1871 
1872  /* mark user pointer invalid */
1873  /* TODO: Is this really safe? It points to some previous caller's memory.
1874  * How could we know that the area pointer is still in that place and not
1875  * some other vital data? What's the purpose of this, anyway? */
1876  *area->user = NULL;
1877  area->user = NULL;
1878 
1880 
1881  print_wa_layout(target);
1882 
1883  return retval;
1884 }
1885 
1887 {
1888  return target_free_working_area_restore(target, area, 1);
1889 }
1890 
1891 static void target_destroy(struct target *target)
1892 {
1893  if (target->type->deinit_target)
1894  target->type->deinit_target(target);
1895 
1897 
1898  struct target_event_action *teap = target->event_action;
1899  while (teap) {
1900  struct target_event_action *next = teap->next;
1901  Jim_DecrRefCount(teap->interp, teap->body);
1902  free(teap);
1903  teap = next;
1904  }
1905 
1907  /* Now we have none or only one working area marked as free */
1908  if (target->working_areas) {
1909  free(target->working_areas->backup);
1910  free(target->working_areas);
1911  }
1912 
1913  /* release the targets SMP list */
1914  if (target->smp) {
1915  struct target_list *head = target->head;
1916  while (head != NULL) {
1917  struct target_list *pos = head->next;
1918  head->target->smp = 0;
1919  free(head);
1920  head = pos;
1921  }
1922  target->smp = 0;
1923  }
1924 
1925  free(target->type);
1926  free(target->trace_info);
1927  free(target->fileio_info);
1928  free(target->cmd_name);
1929  free(target);
1930 }
1931 
1932 void target_quit(void)
1933 {
1935  while (pe) {
1936  struct target_event_callback *t = pe->next;
1937  free(pe);
1938  pe = t;
1939  }
1940  target_event_callbacks = NULL;
1941 
1943  while (pt) {
1944  struct target_timer_callback *t = pt->next;
1945  free(pt);
1946  pt = t;
1947  }
1948  target_timer_callbacks = NULL;
1949 
1950  for (struct target *target = all_targets; target;) {
1951  struct target *tmp;
1952 
1953  tmp = target->next;
1955  target = tmp;
1956  }
1957 
1958  all_targets = NULL;
1959 }
1960 
1961 /* free resources and restore memory, if restoring memory fails,
1962  * free up resources anyway
1963  */
1964 static void target_free_all_working_areas_restore(struct target *target, int restore)
1965 {
1966  struct working_area *c = target->working_areas;
1967 
1968  LOG_DEBUG("freeing all working areas");
1969 
1970  /* Loop through all areas, restoring the allocated ones and marking them as free */
1971  while (c) {
1972  if (!c->free) {
1973  if (restore)
1974  target_restore_working_area(target, c);
1975  c->free = true;
1976  *c->user = NULL; /* Same as above */
1977  c->user = NULL;
1978  }
1979  c = c->next;
1980  }
1981 
1982  /* Run a merge pass to combine all areas into one */
1984 
1985  print_wa_layout(target);
1986 }
1987 
1989 {
1991 }
1992 
1993 /* Find the largest number of bytes that can be allocated */
1995 {
1996  struct working_area *c = target->working_areas;
1997  uint32_t max_size = 0;
1998 
1999  if (c == NULL)
2000  return target->working_area_size;
2001 
2002  while (c) {
2003  if (c->free && max_size < c->size)
2004  max_size = c->size;
2005 
2006  c = c->next;
2007  }
2008 
2009  return max_size;
2010 }
2011 
2013 {
2014  int retval;
2015  if (target == NULL) {
2016  LOG_WARNING("No target has been configured");
2017  return ERROR_OK;
2018  }
2019 
2020  if (target->state != TARGET_HALTED)
2021  return ERROR_OK;
2022 
2023  retval = target->type->arch_state(target);
2024  return retval;
2025 }
2026 
2028  struct gdb_fileio_info *fileio_info)
2029 {
2030  /* If target does not support semi-hosting function, target
2031  has no need to provide .get_gdb_fileio_info callback.
2032  It just return ERROR_FAIL and gdb_server will return "Txx"
2033  as target halted every time. */
2034  return ERROR_FAIL;
2035 }
2036 
2038  int retcode, int fileio_errno, bool ctrl_c)
2039 {
2040  return ERROR_OK;
2041 }
2042 
2043 static int target_profiling_default(struct target *target, uint32_t *samples,
2044  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2045 {
2046  struct timeval timeout, now;
2047 
2048  gettimeofday(&timeout, NULL);
2049  timeval_add_time(&timeout, seconds, 0);
2050 
2051  LOG_INFO("Starting profiling. Halting and resuming the"
2052  " target as often as we can...");
2053 
2054  uint32_t sample_count = 0;
2055  /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2056  struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2057 
2058  int retval = ERROR_OK;
2059  for (;;) {
2060  target_poll(target);
2061  if (target->state == TARGET_HALTED) {
2062  uint32_t t = buf_get_u32(reg->value, 0, 32);
2063  samples[sample_count++] = t;
2064  /* current pc, addr = 0, do not handle breakpoints, not debugging */
2065  retval = target_resume(target, 1, 0, 0, 0);
2066  target_poll(target);
2067  alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2068  } else if (target->state == TARGET_RUNNING) {
2069  /* We want to quickly sample the PC. */
2070  retval = target_halt(target);
2071  } else {
2072  LOG_INFO("Target not halted or running");
2073  retval = ERROR_OK;
2074  break;
2075  }
2076 
2077  if (retval != ERROR_OK)
2078  break;
2079 
2080  gettimeofday(&now, NULL);
2081  if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2082  LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2083  break;
2084  }
2085  }
2086 
2087  *num_samples = sample_count;
2088  return retval;
2089 }
2090 
2091 /* Single aligned words are guaranteed to use 16 or 32 bit access
2092  * mode respectively, otherwise data is handled as quickly as
2093  * possible
2094  */
2095 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2096 {
2097  LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2098  size, address);
2099 
2100  if (!target_was_examined(target)) {
2101  LOG_ERROR("Target not examined yet");
2102  return ERROR_FAIL;
2103  }
2104 
2105  if (size == 0)
2106  return ERROR_OK;
2107 
2108  if ((address + size - 1) < address) {
2109  /* GDB can request this when e.g. PC is 0xfffffffc */
2110  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2111  address,
2112  size);
2113  return ERROR_FAIL;
2114  }
2115 
2116  return target->type->write_buffer(target, address, size, buffer);
2117 }
2118 
2120  target_addr_t address, uint32_t count, const uint8_t *buffer)
2121 {
2122  uint32_t size;
2123 
2124  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2125  * will have something to do with the size we leave to it. */
2126  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2127  if (address & size) {
2128  int retval = target_write_memory(target, address, size, 1, buffer);
2129  if (retval != ERROR_OK)
2130  return retval;
2131  address += size;
2132  count -= size;
2133  buffer += size;
2134  }
2135  }
2136 
2137  /* Write the data with as large access size as possible. */
2138  for (; size > 0; size /= 2) {
2139  uint32_t aligned = count - count % size;
2140  if (aligned > 0) {
2141  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2142  if (retval != ERROR_OK)
2143  return retval;
2144  address += aligned;
2145  count -= aligned;
2146  buffer += aligned;
2147  }
2148  }
2149 
2150  return ERROR_OK;
2151 }
2152 
2153 /* Single aligned words are guaranteed to use 16 or 32 bit access
2154  * mode respectively, otherwise data is handled as quickly as
2155  * possible
2156  */
2157 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2158 {
2159  LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2160  size, address);
2161 
2162  if (!target_was_examined(target)) {
2163  LOG_ERROR("Target not examined yet");
2164  return ERROR_FAIL;
2165  }
2166 
2167  if (size == 0)
2168  return ERROR_OK;
2169 
2170  if ((address + size - 1) < address) {
2171  /* GDB can request this when e.g. PC is 0xfffffffc */
2172  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2173  address,
2174  size);
2175  return ERROR_FAIL;
2176  }
2177 
2178  return target->type->read_buffer(target, address, size, buffer);
2179 }
2180 
2181 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2182 {
2183  uint32_t size;
2184 
2185  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2186  * will have something to do with the size we leave to it. */
2187  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2188  if (address & size) {
2189  int retval = target_read_memory(target, address, size, 1, buffer);
2190  if (retval != ERROR_OK)
2191  return retval;
2192  address += size;
2193  count -= size;
2194  buffer += size;
2195  }
2196  }
2197 
2198  /* Read the data with as large access size as possible. */
2199  for (; size > 0; size /= 2) {
2200  uint32_t aligned = count - count % size;
2201  if (aligned > 0) {
2202  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2203  if (retval != ERROR_OK)
2204  return retval;
2205  address += aligned;
2206  count -= aligned;
2207  buffer += aligned;
2208  }
2209  }
2210 
2211  return ERROR_OK;
2212 }
2213 
2214 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2215 {
2216  uint8_t *buffer;
2217  int retval;
2218  uint32_t i;
2219  uint32_t checksum = 0;
2220  if (!target_was_examined(target)) {
2221  LOG_ERROR("Target not examined yet");
2222  return ERROR_FAIL;
2223  }
2224 
2225  retval = target->type->checksum_memory(target, address, size, &checksum);
2226  if (retval != ERROR_OK) {
2227  buffer = malloc(size);
2228  if (buffer == NULL) {
2229  LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2231  }
2232  retval = target_read_buffer(target, address, size, buffer);
2233  if (retval != ERROR_OK) {
2234  free(buffer);
2235  return retval;
2236  }
2237 
2238  /* convert to target endianness */
2239  for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2240  uint32_t target_data;
2241  target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2242  target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2243  }
2244 
2245  retval = image_calculate_checksum(buffer, size, &checksum);
2246  free(buffer);
2247  }
2248 
2249  *crc = checksum;
2250 
2251  return retval;
2252 }
2253 
2255  struct target_memory_check_block *blocks, int num_blocks,
2256  uint8_t erased_value)
2257 {
2258  if (!target_was_examined(target)) {
2259  LOG_ERROR("Target not examined yet");
2260  return ERROR_FAIL;
2261  }
2262 
2263  if (target->type->blank_check_memory == NULL)
2265 
2266  return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2267 }
2268 
2269 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2270 {
2271  uint8_t value_buf[8];
2272  if (!target_was_examined(target)) {
2273  LOG_ERROR("Target not examined yet");
2274  return ERROR_FAIL;
2275  }
2276 
2277  int retval = target_read_memory(target, address, 8, 1, value_buf);
2278 
2279  if (retval == ERROR_OK) {
2280  *value = target_buffer_get_u64(target, value_buf);
2281  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2282  address,
2283  *value);
2284  } else {
2285  *value = 0x0;
2286  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2287  address);
2288  }
2289 
2290  return retval;
2291 }
2292 
2293 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2294 {
2295  uint8_t value_buf[4];
2296  if (!target_was_examined(target)) {
2297  LOG_ERROR("Target not examined yet");
2298  return ERROR_FAIL;
2299  }
2300 
2301  int retval = target_read_memory(target, address, 4, 1, value_buf);
2302 
2303  if (retval == ERROR_OK) {
2304  *value = target_buffer_get_u32(target, value_buf);
2305  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2306  address,
2307  *value);
2308  } else {
2309  *value = 0x0;
2310  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2311  address);
2312  }
2313 
2314  return retval;
2315 }
2316 
2317 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2318 {
2319  uint8_t value_buf[2];
2320  if (!target_was_examined(target)) {
2321  LOG_ERROR("Target not examined yet");
2322  return ERROR_FAIL;
2323  }
2324 
2325  int retval = target_read_memory(target, address, 2, 1, value_buf);
2326 
2327  if (retval == ERROR_OK) {
2328  *value = target_buffer_get_u16(target, value_buf);
2329  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2330  address,
2331  *value);
2332  } else {
2333  *value = 0x0;
2334  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2335  address);
2336  }
2337 
2338  return retval;
2339 }
2340 
2341 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2342 {
2343  if (!target_was_examined(target)) {
2344  LOG_ERROR("Target not examined yet");
2345  return ERROR_FAIL;
2346  }
2347 
2348  int retval = target_read_memory(target, address, 1, 1, value);
2349 
2350  if (retval == ERROR_OK) {
2351  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2352  address,
2353  *value);
2354  } else {
2355  *value = 0x0;
2356  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2357  address);
2358  }
2359 
2360  return retval;
2361 }
2362 
2363 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2364 {
2365  int retval;
2366  uint8_t value_buf[8];
2367  if (!target_was_examined(target)) {
2368  LOG_ERROR("Target not examined yet");
2369  return ERROR_FAIL;
2370  }
2371 
2372  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2373  address,
2374  value);
2375 
2376  target_buffer_set_u64(target, value_buf, value);
2377  retval = target_write_memory(target, address, 8, 1, value_buf);
2378  if (retval != ERROR_OK)
2379  LOG_DEBUG("failed: %i", retval);
2380 
2381  return retval;
2382 }
2383 
2384 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2385 {
2386  int retval;
2387  uint8_t value_buf[4];
2388  if (!target_was_examined(target)) {
2389  LOG_ERROR("Target not examined yet");
2390  return ERROR_FAIL;
2391  }
2392 
2393  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2394  address,
2395  value);
2396 
2397  target_buffer_set_u32(target, value_buf, value);
2398  retval = target_write_memory(target, address, 4, 1, value_buf);
2399  if (retval != ERROR_OK)
2400  LOG_DEBUG("failed: %i", retval);
2401 
2402  return retval;
2403 }
2404 
2405 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2406 {
2407  int retval;
2408  uint8_t value_buf[2];
2409  if (!target_was_examined(target)) {
2410  LOG_ERROR("Target not examined yet");
2411  return ERROR_FAIL;
2412  }
2413 
2414  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2415  address,
2416  value);
2417 
2418  target_buffer_set_u16(target, value_buf, value);
2419  retval = target_write_memory(target, address, 2, 1, value_buf);
2420  if (retval != ERROR_OK)
2421  LOG_DEBUG("failed: %i", retval);
2422 
2423  return retval;
2424 }
2425 
2426 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2427 {
2428  int retval;
2429  if (!target_was_examined(target)) {
2430  LOG_ERROR("Target not examined yet");
2431  return ERROR_FAIL;
2432  }
2433 
2434  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2435  address, value);
2436 
2437  retval = target_write_memory(target, address, 1, 1, &value);
2438  if (retval != ERROR_OK)
2439  LOG_DEBUG("failed: %i", retval);
2440 
2441  return retval;
2442 }
2443 
2444 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2445 {
2446  int retval;
2447  uint8_t value_buf[8];
2448  if (!target_was_examined(target)) {
2449  LOG_ERROR("Target not examined yet");
2450  return ERROR_FAIL;
2451  }
2452 
2453  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2454  address,
2455  value);
2456 
2457  target_buffer_set_u64(target, value_buf, value);
2458  retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2459  if (retval != ERROR_OK)
2460  LOG_DEBUG("failed: %i", retval);
2461 
2462  return retval;
2463 }
2464 
2465 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2466 {
2467  int retval;
2468  uint8_t value_buf[4];
2469  if (!target_was_examined(target)) {
2470  LOG_ERROR("Target not examined yet");
2471  return ERROR_FAIL;
2472  }
2473 
2474  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2475  address,
2476  value);
2477 
2478  target_buffer_set_u32(target, value_buf, value);
2479  retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2480  if (retval != ERROR_OK)
2481  LOG_DEBUG("failed: %i", retval);
2482 
2483  return retval;
2484 }
2485 
2486 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2487 {
2488  int retval;
2489  uint8_t value_buf[2];
2490  if (!target_was_examined(target)) {
2491  LOG_ERROR("Target not examined yet");
2492  return ERROR_FAIL;
2493  }
2494 
2495  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2496  address,
2497  value);
2498 
2499  target_buffer_set_u16(target, value_buf, value);
2500  retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2501  if (retval != ERROR_OK)
2502  LOG_DEBUG("failed: %i", retval);
2503 
2504  return retval;
2505 }
2506 
2507 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2508 {
2509  int retval;
2510  if (!target_was_examined(target)) {
2511  LOG_ERROR("Target not examined yet");
2512  return ERROR_FAIL;
2513  }
2514 
2515  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2516  address, value);
2517 
2518  retval = target_write_phys_memory(target, address, 1, 1, &value);
2519  if (retval != ERROR_OK)
2520  LOG_DEBUG("failed: %i", retval);
2521 
2522  return retval;
2523 }
2524 
2525 static int find_target(struct command_context *cmd_ctx, const char *name)
2526 {
2527  struct target *target = get_target(name);
2528  if (target == NULL) {
2529  LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2530  return ERROR_FAIL;
2531  }
2532  if (!target->tap->enabled) {
2533  LOG_USER("Target: TAP %s is disabled, "
2534  "can't be the current target\n",
2535  target->tap->dotted_name);
2536  return ERROR_FAIL;
2537  }
2538 
2539  cmd_ctx->current_target = target;
2540  if (cmd_ctx->current_target_override)
2541  cmd_ctx->current_target_override = target;
2542 
2543  return ERROR_OK;
2544 }
2545 
2546 
2547 COMMAND_HANDLER(handle_targets_command)
2548 {
2549  int retval = ERROR_OK;
2550  if (CMD_ARGC == 1) {
2551  retval = find_target(CMD_CTX, CMD_ARGV[0]);
2552  if (retval == ERROR_OK) {
2553  /* we're done! */
2554  return retval;
2555  }
2556  }
2557 
2558  struct target *target = all_targets;
2559  command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2560  command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2561  while (target) {
2562  const char *state;
2563  char marker = ' ';
2564 
2565  if (target->tap->enabled)
2566  state = target_state_name(target);
2567  else
2568  state = "tap-disabled";
2569 
2570  if (CMD_CTX->current_target == target)
2571  marker = '*';
2572 
2573  /* keep columns lined up to match the headers above */
2575  "%2d%c %-18s %-10s %-6s %-18s %s",
2576  target->target_number,
2577  marker,
2578  target_name(target),
2579  target_type_name(target),
2580  Jim_Nvp_value2name_simple(nvp_target_endian,
2581  target->endianness)->name,
2582  target->tap->dotted_name,
2583  state);
2584  target = target->next;
2585  }
2586 
2587  return retval;
2588 }
2589 
2590 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2591 
2592 static int powerDropout;
2593 static int srstAsserted;
2594 
2595 static int runPowerRestore;
2596 static int runPowerDropout;
2597 static int runSrstAsserted;
2599 
2600 static int sense_handler(void)
2601 {
2602  static int prevSrstAsserted;
2603  static int prevPowerdropout;
2604 
2605  int retval = jtag_power_dropout(&powerDropout);
2606  if (retval != ERROR_OK)
2607  return retval;
2608 
2609  int powerRestored;
2610  powerRestored = prevPowerdropout && !powerDropout;
2611  if (powerRestored)
2612  runPowerRestore = 1;
2613 
2614  int64_t current = timeval_ms();
2615  static int64_t lastPower;
2616  bool waitMore = lastPower + 2000 > current;
2617  if (powerDropout && !waitMore) {
2618  runPowerDropout = 1;
2619  lastPower = current;
2620  }
2621 
2622  retval = jtag_srst_asserted(&srstAsserted);
2623  if (retval != ERROR_OK)
2624  return retval;
2625 
2626  int srstDeasserted;
2627  srstDeasserted = prevSrstAsserted && !srstAsserted;
2628 
2629  static int64_t lastSrst;
2630  waitMore = lastSrst + 2000 > current;
2631  if (srstDeasserted && !waitMore) {
2632  runSrstDeasserted = 1;
2633  lastSrst = current;
2634  }
2635 
2636  if (!prevSrstAsserted && srstAsserted)
2637  runSrstAsserted = 1;
2638 
2639  prevSrstAsserted = srstAsserted;
2640  prevPowerdropout = powerDropout;
2641 
2642  if (srstDeasserted || powerRestored) {
2643  /* Other than logging the event we can't do anything here.
2644  * Issuing a reset is a particularly bad idea as we might
2645  * be inside a reset already.
2646  */
2647  }
2648 
2649  return ERROR_OK;
2650 }
2651 
2652 /* process target state changes */
2653 static int handle_target(void *priv)
2654 {
2655  Jim_Interp *interp = (Jim_Interp *)priv;
2656  int retval = ERROR_OK;
2657 
2658  if (!is_jtag_poll_safe()) {
2659  /* polling is disabled currently */
2660  return ERROR_OK;
2661  }
2662 
2663  /* we do not want to recurse here... */
2664  static int recursive;
2665  if (!recursive) {
2666  recursive = 1;
2667  sense_handler();
2668  /* danger! running these procedures can trigger srst assertions and power dropouts.
2669  * We need to avoid an infinite loop/recursion here and we do that by
2670  * clearing the flags after running these events.
2671  */
2672  int did_something = 0;
2673  if (runSrstAsserted) {
2674  LOG_INFO("srst asserted detected, running srst_asserted proc.");
2675  Jim_Eval(interp, "srst_asserted");
2676  did_something = 1;
2677  }
2678  if (runSrstDeasserted) {
2679  Jim_Eval(interp, "srst_deasserted");
2680  did_something = 1;
2681  }
2682  if (runPowerDropout) {
2683  LOG_INFO("Power dropout detected, running power_dropout proc.");
2684  Jim_Eval(interp, "power_dropout");
2685  did_something = 1;
2686  }
2687  if (runPowerRestore) {
2688  Jim_Eval(interp, "power_restore");
2689  did_something = 1;
2690  }
2691 
2692  if (did_something) {
2693  /* clear detect flags */
2694  sense_handler();
2695  }
2696 
2697  /* clear action flags */
2698 
2699  runSrstAsserted = 0;
2700  runSrstDeasserted = 0;
2701  runPowerRestore = 0;
2702  runPowerDropout = 0;
2703 
2704  recursive = 0;
2705  }
2706 
2707  /* Poll targets for state changes unless that's globally disabled.
2708  * Skip targets that are currently disabled.
2709  */
2710  for (struct target *target = all_targets;
2712  target = target->next) {
2713 
2715  continue;
2716 
2717  if (!target->tap->enabled)
2718  continue;
2719 
2720  if (target->backoff.times > target->backoff.count) {
2721  /* do not poll this time as we failed previously */
2722  target->backoff.count++;
2723  continue;
2724  }
2725  target->backoff.count = 0;
2726 
2727  /* only poll target if we've got power and srst isn't asserted */
2728  if (!powerDropout && !srstAsserted) {
2729  /* polling may fail silently until the target has been examined */
2730  retval = target_poll(target);
2731  if (retval != ERROR_OK) {
2732  /* 100ms polling interval. Increase interval between polling up to 5000ms */
2733  if (target->backoff.times * polling_interval < 5000) {
2734  target->backoff.times *= 2;
2735  target->backoff.times++;
2736  }
2737 
2738  /* Tell GDB to halt the debugger. This allows the user to
2739  * run monitor commands to handle the situation.
2740  */
2742  }
2743  if (target->backoff.times > 0) {
2744  LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2746  retval = target_examine_one(target);
2747  /* Target examination could have failed due to unstable connection,
2748  * but we set the examined flag anyway to repoll it later */
2749  if (retval != ERROR_OK) {
2750  target->examined = true;
2751  LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2753  return retval;
2754  }
2755  }
2756 
2757  /* Since we succeeded, we reset backoff count */
2758  target->backoff.times = 0;
2759  }
2760  }
2761 
2762  return retval;
2763 }
2764 
2765 COMMAND_HANDLER(handle_reg_command)
2766 {
2767  struct target *target;
2768  struct reg *reg = NULL;
2769  unsigned count = 0;
2770  char *value;
2771 
2772  LOG_DEBUG("-");
2773 
2774  target = get_current_target(CMD_CTX);
2775 
2776  /* list all available registers for the current target */
2777  if (CMD_ARGC == 0) {
2778  struct reg_cache *cache = target->reg_cache;
2779 
2780  count = 0;
2781  while (cache) {
2782  unsigned i;
2783 
2784  command_print(CMD_CTX, "===== %s", cache->name);
2785 
2786  for (i = 0, reg = cache->reg_list;
2787  i < cache->num_regs;
2788  i++, reg++, count++) {
2789  /* only print cached values if they are valid */
2790  if (reg->valid) {
2791  value = buf_to_str(reg->value,
2792  reg->size, 16);
2794  "(%i) %s (/%" PRIu32 "): 0x%s%s",
2795  count, reg->name,
2796  reg->size, value,
2797  reg->dirty
2798  ? " (dirty)"
2799  : "");
2800  free(value);
2801  } else {
2802  command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2803  count, reg->name,
2804  reg->size) ;
2805  }
2806  }
2807  cache = cache->next;
2808  }
2809 
2810  return ERROR_OK;
2811  }
2812 
2813  /* access a single register by its ordinal number */
2814  if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2815  unsigned num;
2816  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2817 
2818  struct reg_cache *cache = target->reg_cache;
2819  count = 0;
2820  while (cache) {
2821  unsigned i;
2822  for (i = 0; i < cache->num_regs; i++) {
2823  if (count++ == num) {
2824  reg = &cache->reg_list[i];
2825  break;
2826  }
2827  }
2828  if (reg)
2829  break;
2830  cache = cache->next;
2831  }
2832 
2833  if (!reg) {
2834  command_print(CMD_CTX, "%i is out of bounds, the current target "
2835  "has only %i registers (0 - %i)", num, count, count - 1);
2836  return ERROR_OK;
2837  }
2838  } else {
2839  /* access a single register by its name */
2840  reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2841 
2842  if (!reg) {
2843  command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2844  return ERROR_OK;
2845  }
2846  }
2847 
2848  assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2849 
2850  /* display a register */
2851  if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2852  && (CMD_ARGV[1][0] <= '9')))) {
2853  if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2854  reg->valid = 0;
2855 
2856  if (reg->valid == 0)
2857  reg->type->get(reg);
2858  value = buf_to_str(reg->value, reg->size, 16);
2859  command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2860  free(value);
2861  return ERROR_OK;
2862  }
2863 
2864  /* set register value */
2865  if (CMD_ARGC == 2) {
2866  uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2867  if (buf == NULL)
2868  return ERROR_FAIL;
2869  str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2870 
2871  reg->type->set(reg, buf);
2872 
2873  value = buf_to_str(reg->value, reg->size, 16);
2874  command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2875  free(value);
2876 
2877  free(buf);
2878 
2879  return ERROR_OK;
2880  }
2881 
2883 }
2884 
2885 COMMAND_HANDLER(handle_poll_command)
2886 {
2887  int retval = ERROR_OK;
2889 
2890  if (CMD_ARGC == 0) {
2891  command_print(CMD_CTX, "background polling: %s",
2892  jtag_poll_get_enabled() ? "on" : "off");
2893  command_print(CMD_CTX, "TAP: %s (%s)",
2894  target->tap->dotted_name,
2895  target->tap->enabled ? "enabled" : "disabled");
2896  if (!target->tap->enabled)
2897  return ERROR_OK;
2898  retval = target_poll(target);
2899  if (retval != ERROR_OK)
2900  return retval;
2901  retval = target_arch_state(target);
2902  if (retval != ERROR_OK)
2903  return retval;
2904  } else if (CMD_ARGC == 1) {
2905  bool enable;
2906  COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2907  jtag_poll_set_enabled(enable);
2908  } else
2910 
2911  return retval;
2912 }
2913 
2914 COMMAND_HANDLER(handle_wait_halt_command)
2915 {
2916  if (CMD_ARGC > 1)
2918 
2919  unsigned ms = DEFAULT_HALT_TIMEOUT;
2920  if (1 == CMD_ARGC) {
2921  int retval = parse_uint(CMD_ARGV[0], &ms);
2922  if (ERROR_OK != retval)
2924  }
2925 
2927  return target_wait_state(target, TARGET_HALTED, ms);
2928 }
2929 
2930 /* wait for target state to change. The trick here is to have a low
2931  * latency for short waits and not to suck up all the CPU time
2932  * on longer waits.
2933  *
2934  * After 500ms, keep_alive() is invoked
2935  */
2937 {
2938  int retval;
2939  int64_t then = 0, cur;
2940  bool once = true;
2941 
2942  for (;;) {
2943  retval = target_poll(target);
2944  if (retval != ERROR_OK)
2945  return retval;
2946  if (target->state == state)
2947  break;
2948  cur = timeval_ms();
2949  if (once) {
2950  once = false;
2951  then = timeval_ms();
2952  LOG_DEBUG("waiting for target %s...",
2953  Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2954  }
2955 
2956  if (cur-then > 500)
2957  keep_alive();
2958 
2959  if ((cur-then) > ms) {
2960  LOG_ERROR("timed out while waiting for target %s",
2961  Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2962  return ERROR_FAIL;
2963  }
2964  }
2965 
2966  return ERROR_OK;
2967 }
2968 
2969 COMMAND_HANDLER(handle_halt_command)
2970 {
2971  LOG_DEBUG("-");
2972 
2974 
2975  target->verbose_halt_msg = true;
2976 
2977  int retval = target_halt(target);
2978  if (ERROR_OK != retval)
2979  return retval;
2980 
2981  if (CMD_ARGC == 1) {
2982  unsigned wait_local;
2983  retval = parse_uint(CMD_ARGV[0], &wait_local);
2984  if (ERROR_OK != retval)
2986  if (!wait_local)
2987  return ERROR_OK;
2988  }
2989 
2990  return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2991 }
2992 
2993 COMMAND_HANDLER(handle_soft_reset_halt_command)
2994 {
2996 
2997  LOG_USER("requesting target halt and executing a soft reset");
2998 
2999  target_soft_reset_halt(target);
3000 
3001  return ERROR_OK;
3002 }
3003 
3004 COMMAND_HANDLER(handle_reset_command)
3005 {
3006  if (CMD_ARGC > 1)
3008 
3009  enum target_reset_mode reset_mode = RESET_RUN;
3010  if (CMD_ARGC == 1) {
3011  const Jim_Nvp *n;
3012  n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3013  if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3015  reset_mode = n->value;
3016  }
3017 
3018  /* reset *all* targets */
3019  return target_process_reset(CMD_CTX, reset_mode);
3020 }
3021 
3022 
3023 COMMAND_HANDLER(handle_resume_command)
3024 {
3025  int current = 1;
3026  if (CMD_ARGC > 1)
3028 
3030 
3031  /* with no CMD_ARGV, resume from current pc, addr = 0,
3032  * with one arguments, addr = CMD_ARGV[0],
3033  * handle breakpoints, not debugging */
3034  target_addr_t addr = 0;
3035  if (CMD_ARGC == 1) {
3036  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3037  current = 0;
3038  }
3039 
3040  return target_resume(target, current, addr, 1, 0);
3041 }
3042 
3043 COMMAND_HANDLER(handle_step_command)
3044 {
3045  if (CMD_ARGC > 1)
3047 
3048  LOG_DEBUG("-");
3049 
3050  /* with no CMD_ARGV, step from current pc, addr = 0,
3051  * with one argument addr = CMD_ARGV[0],
3052  * handle breakpoints, debugging */
3053  target_addr_t addr = 0;
3054  int current_pc = 1;
3055  if (CMD_ARGC == 1) {
3056  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3057  current_pc = 0;
3058  }
3059 
3061 
3062  return target->type->step(target, current_pc, addr, 1);
3063 }
3064 
3065 static void handle_md_output(struct command_context *cmd_ctx,
3066  struct target *target, target_addr_t address, unsigned size,
3067  unsigned count, const uint8_t *buffer)
3068 {
3069  const unsigned line_bytecnt = 32;
3070  unsigned line_modulo = line_bytecnt / size;
3071 
3072  char output[line_bytecnt * 4 + 1];
3073  unsigned output_len = 0;
3074 
3075  const char *value_fmt;
3076  switch (size) {
3077  case 8:
3078  value_fmt = "%16.16"PRIx64" ";
3079  break;
3080  case 4:
3081  value_fmt = "%8.8"PRIx64" ";
3082  break;
3083  case 2:
3084  value_fmt = "%4.4"PRIx64" ";
3085  break;
3086  case 1:
3087  value_fmt = "%2.2"PRIx64" ";
3088  break;
3089  default:
3090  /* "can't happen", caller checked */
3091  LOG_ERROR("invalid memory read size: %u", size);
3092  return;
3093  }
3094 
3095  for (unsigned i = 0; i < count; i++) {
3096  if (i % line_modulo == 0) {
3097  output_len += snprintf(output + output_len,
3098  sizeof(output) - output_len,
3099  TARGET_ADDR_FMT ": ",
3100  (address + (i * size)));
3101  }
3102 
3103  uint64_t value = 0;
3104  const uint8_t *value_ptr = buffer + i * size;
3105  switch (size) {
3106  case 8:
3107  value = target_buffer_get_u64(target, value_ptr);
3108  break;
3109  case 4:
3110  value = target_buffer_get_u32(target, value_ptr);
3111  break;
3112  case 2:
3113  value = target_buffer_get_u16(target, value_ptr);
3114  break;
3115  case 1:
3116  value = *value_ptr;
3117  }
3118  output_len += snprintf(output + output_len,
3119  sizeof(output) - output_len,
3120  value_fmt, value);
3121 
3122  if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3123  command_print(cmd_ctx, "%s", output);
3124  output_len = 0;
3125  }
3126  }
3127 }
3128 
3129 COMMAND_HANDLER(handle_md_command)
3130 {
3131  if (CMD_ARGC < 1)
3133 
3134  unsigned size = 0;
3135  switch (CMD_NAME[2]) {
3136  case 'd':
3137  size = 8;
3138  break;
3139  case 'w':
3140  size = 4;
3141  break;
3142  case 'h':
3143  size = 2;
3144  break;
3145  case 'b':
3146  size = 1;
3147  break;
3148  default:
3150  }
3151 
3152  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3153  int (*fn)(struct target *target,
3154  target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3155  if (physical) {
3156  CMD_ARGC--;
3157  CMD_ARGV++;
3159  } else
3160  fn = target_read_memory;
3161  if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3163 
3164  target_addr_t address;
3165  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3166 
3167  unsigned count = 1;
3168  if (CMD_ARGC == 2)
3169  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3170 
3171  uint8_t *buffer = calloc(count, size);
3172  if (buffer == NULL) {
3173  LOG_ERROR("Failed to allocate md read buffer");
3174  return ERROR_FAIL;
3175  }
3176 
3177  struct target *target = get_current_target(CMD_CTX);
3178  int retval = fn(target, address, size, count, buffer);
3179  if (ERROR_OK == retval)
3180  handle_md_output(CMD_CTX, target, address, size, count, buffer);
3181 
3182  free(buffer);
3183 
3184  return retval;
3185 }
3186 
3187 typedef int (*target_write_fn)(struct target *target,
3188  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3189 
3190 static int target_fill_mem(struct target *target,
3191  target_addr_t address,
3192  target_write_fn fn,
3193  unsigned data_size,
3194  /* value */
3195  uint64_t b,
3196  /* count */
3197  unsigned c)
3198 {
3199  /* We have to write in reasonably large chunks to be able
3200  * to fill large memory areas with any sane speed */
3201  const unsigned chunk_size = 16384;
3202  uint8_t *target_buf = malloc(chunk_size * data_size);
3203  if (target_buf == NULL) {
3204  LOG_ERROR("Out of memory");
3205  return ERROR_FAIL;
3206  }
3207 
3208  for (unsigned i = 0; i < chunk_size; i++) {
3209  switch (data_size) {
3210  case 8:
3211  target_buffer_set_u64(target, target_buf + i * data_size, b);
3212  break;
3213  case 4:
3214  target_buffer_set_u32(target, target_buf + i * data_size, b);
3215  break;
3216  case 2:
3217  target_buffer_set_u16(target, target_buf + i * data_size, b);
3218  break;
3219  case 1:
3220  target_buffer_set_u8(target, target_buf + i * data_size, b);
3221  break;
3222  default:
3223  exit(-1);
3224  }
3225  }
3226 
3227  int retval = ERROR_OK;
3228 
3229  for (unsigned x = 0; x < c; x += chunk_size) {
3230  unsigned current;
3231  current = c - x;
3232  if (current > chunk_size)
3233  current = chunk_size;
3234  retval = fn(target, address + x * data_size, data_size, current, target_buf);
3235  if (retval != ERROR_OK)
3236  break;
3237  /* avoid GDB timeouts */
3238  keep_alive();
3239  }
3240  free(target_buf);
3241 
3242  return retval;
3243 }
3244 
3245 
3246 COMMAND_HANDLER(handle_mw_command)
3247 {
3248  if (CMD_ARGC < 2)
3250  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3251  target_write_fn fn;
3252  if (physical) {
3253  CMD_ARGC--;
3254  CMD_ARGV++;
3256  } else
3257  fn = target_write_memory;
3258  if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3260 
3261  target_addr_t address;
3262  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3263 
3264  target_addr_t value;
3265  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3266 
3267  unsigned count = 1;
3268  if (CMD_ARGC == 3)
3269  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3270 
3271  struct target *target = get_current_target(CMD_CTX);
3272  unsigned wordsize;
3273  switch (CMD_NAME[2]) {
3274  case 'd':
3275  wordsize = 8;
3276  break;
3277  case 'w':
3278  wordsize = 4;
3279  break;
3280  case 'h':
3281  wordsize = 2;
3282  break;
3283  case 'b':
3284  wordsize = 1;
3285  break;
3286  default:
3288  }
3289 
3290  return target_fill_mem(target, address, fn, wordsize, value, count);
3291 }
3292 
3293 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3294  target_addr_t *min_address, target_addr_t *max_address)
3295 {
3296  if (CMD_ARGC < 1 || CMD_ARGC > 5)
3298 
3299  /* a base address isn't always necessary,
3300  * default to 0x0 (i.e. don't relocate) */
3301  if (CMD_ARGC >= 2) {
3303  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3304  image->base_address = addr;
3305  image->base_address_set = 1;
3306  } else
3307  image->base_address_set = 0;
3308 
3309  image->start_address_set = 0;
3310 
3311  if (CMD_ARGC >= 4)
3312  COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3313  if (CMD_ARGC == 5) {
3314  COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3315  /* use size (given) to find max (required) */
3316  *max_address += *min_address;
3317  }
3318 
3319  if (*min_address > *max_address)
3321 
3322  return ERROR_OK;
3323 }
3324 
3325 COMMAND_HANDLER(handle_load_image_command)
3326 {
3327  uint8_t *buffer;
3328  size_t buf_cnt;
3329  uint32_t image_size;
3330  target_addr_t min_address = 0;
3331  target_addr_t max_address = -1;
3332  int i;
3333  struct image image;
3334 
3335  int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3336  &image, &min_address, &max_address);
3337  if (ERROR_OK != retval)
3338  return retval;
3339 
3340  struct target *target = get_current_target(CMD_CTX);
3341 
3342  struct duration bench;
3343  duration_start(&bench);
3344 
3345  if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3346  return ERROR_FAIL;
3347 
3348  image_size = 0x0;
3349  retval = ERROR_OK;
3350  for (i = 0; i < image.num_sections; i++) {
3351  buffer = malloc(image.sections[i].size);
3352  if (buffer == NULL) {
3354  "error allocating buffer for section (%d bytes)",
3355  (int)(image.sections[i].size));
3356  retval = ERROR_FAIL;
3357  break;
3358  }
3359 
3360  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3361  if (retval != ERROR_OK) {
3362  free(buffer);
3363  break;
3364  }
3365 
3366  uint32_t offset = 0;
3367  uint32_t length = buf_cnt;
3368 
3369  /* DANGER!!! beware of unsigned comparision here!!! */
3370 
3371  if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3372  (image.sections[i].base_address < max_address)) {
3373 
3374  if (image.sections[i].base_address < min_address) {
3375  /* clip addresses below */
3376  offset += min_address-image.sections[i].base_address;
3377  length -= offset;
3378  }
3379 
3380  if (image.sections[i].base_address + buf_cnt > max_address)
3381  length -= (image.sections[i].base_address + buf_cnt)-max_address;
3382 
3383  retval = target_write_buffer(target,
3384  image.sections[i].base_address + offset, length, buffer + offset);
3385  if (retval != ERROR_OK) {
3386  free(buffer);
3387  break;
3388  }
3389  image_size += length;
3390  command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3391  (unsigned int)length,
3392  image.sections[i].base_address + offset);
3393  }
3394 
3395  free(buffer);
3396  }
3397 
3398  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3399  command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3400  "in %fs (%0.3f KiB/s)", image_size,
3401  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3402  }
3403 
3404  image_close(&image);
3405 
3406  return retval;
3407 
3408 }
3409 
3410 COMMAND_HANDLER(handle_dump_image_command)
3411 {
3412  struct fileio *fileio;
3413  uint8_t *buffer;
3414  int retval, retvaltemp;
3415  target_addr_t address, size;
3416  struct duration bench;
3417  struct target *target = get_current_target(CMD_CTX);
3418 
3419  if (CMD_ARGC != 3)
3421 
3422  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3423  COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3424 
3425  uint32_t buf_size = (size > 4096) ? 4096 : size;
3426  buffer = malloc(buf_size);
3427  if (!buffer)
3428  return ERROR_FAIL;
3429 
3430  retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3431  if (retval != ERROR_OK) {
3432  free(buffer);
3433  return retval;
3434  }
3435 
3436  duration_start(&bench);
3437 
3438  while (size > 0) {
3439  size_t size_written;
3440  uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3441  retval = target_read_buffer(target, address, this_run_size, buffer);
3442  if (retval != ERROR_OK)
3443  break;
3444 
3445  retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3446  if (retval != ERROR_OK)
3447  break;
3448 
3449  size -= this_run_size;
3450  address += this_run_size;
3451  }
3452 
3453  free(buffer);
3454 
3455  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3456  size_t filesize;
3457  retval = fileio_size(fileio, &filesize);
3458  if (retval != ERROR_OK)
3459  return retval;
3461  "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3462  duration_elapsed(&bench), duration_kbps(&bench, filesize));
3463  }
3464 
3465  retvaltemp = fileio_close(fileio);
3466  if (retvaltemp != ERROR_OK)
3467  return retvaltemp;
3468 
3469  return retval;
3470 }
3471 
3476 };
3477 
3478 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3479 {
3480  uint8_t *buffer;
3481  size_t buf_cnt;
3482  uint32_t image_size;
3483  int i;
3484  int retval;
3485  uint32_t checksum = 0;
3486  uint32_t mem_checksum = 0;
3487 
3488  struct image image;
3489 
3490  struct target *target = get_current_target(CMD_CTX);
3491 
3492  if (CMD_ARGC < 1)
3494 
3495  if (!target) {
3496  LOG_ERROR("no target selected");
3497  return ERROR_FAIL;
3498  }
3499 
3500  struct duration bench;
3501  duration_start(&bench);
3502 
3503  if (CMD_ARGC >= 2) {
3505  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3506  image.base_address = addr;
3507  image.base_address_set = 1;
3508  } else {
3509  image.base_address_set = 0;
3510  image.base_address = 0x0;
3511  }
3512 
3513  image.start_address_set = 0;
3514 
3515  retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3516  if (retval != ERROR_OK)
3517  return retval;
3518 
3519  image_size = 0x0;
3520  int diffs = 0;
3521  retval = ERROR_OK;
3522  for (i = 0; i < image.num_sections; i++) {
3523  buffer = malloc(image.sections[i].size);
3524  if (buffer == NULL) {
3526  "error allocating buffer for section (%d bytes)",
3527  (int)(image.sections[i].size));
3528  break;
3529  }
3530  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3531  if (retval != ERROR_OK) {
3532  free(buffer);
3533  break;
3534  }
3535 
3536  if (verify >= IMAGE_VERIFY) {
3537  /* calculate checksum of image */
3538  retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3539  if (retval != ERROR_OK) {
3540  free(buffer);
3541  break;
3542  }
3543 
3544  retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3545  if (retval != ERROR_OK) {
3546  free(buffer);
3547  break;
3548  }
3549  if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3550  LOG_ERROR("checksum mismatch");
3551  free(buffer);
3552  retval = ERROR_FAIL;
3553  goto done;
3554  }
3555  if (checksum != mem_checksum) {
3556  /* failed crc checksum, fall back to a binary compare */
3557  uint8_t *data;
3558 
3559  if (diffs == 0)
3560  LOG_ERROR("checksum mismatch - attempting binary compare");
3561 
3562  data = malloc(buf_cnt);
3563 
3564  /* Can we use 32bit word accesses? */
3565  int size = 1;
3566  int count = buf_cnt;
3567  if ((count % 4) == 0) {
3568  size *= 4;
3569  count /= 4;
3570  }
3571  retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3572  if (retval == ERROR_OK) {
3573  uint32_t t;
3574  for (t = 0; t < buf_cnt; t++) {
3575  if (data[t] != buffer[t]) {
3577  "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3578  diffs,
3579  (unsigned)(t + image.sections[i].base_address),
3580  data[t],
3581  buffer[t]);
3582  if (diffs++ >= 127) {
3583  command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3584  free(data);
3585  free(buffer);
3586  goto done;
3587  }
3588  }
3589  keep_alive();
3590  }
3591  }
3592  free(data);
3593  }
3594  } else {
3595  command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3596  image.sections[i].base_address,
3597  buf_cnt);
3598  }
3599 
3600  free(buffer);
3601  image_size += buf_cnt;
3602  }
3603  if (diffs > 0)
3604  command_print(CMD_CTX, "No more differences found.");
3605 done:
3606  if (diffs > 0)
3607  retval = ERROR_FAIL;
3608  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3609  command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3610  "in %fs (%0.3f KiB/s)", image_size,
3611  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3612  }
3613 
3614  image_close(&image);
3615 
3616  return retval;
3617 }
3618 
3619 COMMAND_HANDLER(handle_verify_image_checksum_command)
3620 {
3621  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3622 }
3623 
3624 COMMAND_HANDLER(handle_verify_image_command)
3625 {
3626  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3627 }
3628 
3629 COMMAND_HANDLER(handle_test_image_command)
3630 {
3631  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3632 }
3633 
3634 static int handle_bp_command_list(struct command_context *cmd_ctx)
3635 {
3636  struct target *target = get_current_target(cmd_ctx);
3637  struct breakpoint *breakpoint = target->breakpoints;
3638  while (breakpoint) {
3639  if (breakpoint->type == BKPT_SOFT) {
3640  char *buf = buf_to_str(breakpoint->orig_instr,
3641  breakpoint->length, 16);
3642  command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3643  breakpoint->address,
3644  breakpoint->length,
3645  breakpoint->set, buf);
3646  free(buf);
3647  } else {
3648  if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3649  command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3650  breakpoint->asid,
3651  breakpoint->length, breakpoint->set);
3652  else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3653  command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3654  breakpoint->address,
3655  breakpoint->length, breakpoint->set);
3656  command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3657  breakpoint->asid);
3658  } else
3659  command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3660  breakpoint->address,
3661  breakpoint->length, breakpoint->set);
3662  }
3663 
3664  breakpoint = breakpoint->next;
3665  }
3666  return ERROR_OK;
3667 }
3668 
3669 static int handle_bp_command_set(struct command_context *cmd_ctx,
3670  target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3671 {
3672  struct target *target = get_current_target(cmd_ctx);
3673  int retval;
3674 
3675  if (asid == 0) {
3676  retval = breakpoint_add(target, addr, length, hw);
3677  if (ERROR_OK == retval)
3678  command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3679  else {
3680  LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3681  return retval;
3682  }
3683  } else if (addr == 0) {
3684  if (target->type->add_context_breakpoint == NULL) {
3685  LOG_WARNING("Context breakpoint not available");
3686  return ERROR_OK;
3687  }
3688  retval = context_breakpoint_add(target, asid, length, hw);
3689  if (ERROR_OK == retval)
3690  command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3691  else {
3692  LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3693  return retval;
3694  }
3695  } else {
3696  if (target->type->add_hybrid_breakpoint == NULL) {
3697  LOG_WARNING("Hybrid breakpoint not available");
3698  return ERROR_OK;
3699  }
3700  retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3701  if (ERROR_OK == retval)
3702  command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3703  else {
3704  LOG_ERROR("Failure setting breakpoint, the same address is already used");
3705  return retval;
3706  }
3707  }
3708  return ERROR_OK;
3709 }
3710 
3711 COMMAND_HANDLER(handle_bp_command)
3712 {
3714  uint32_t asid;
3715  uint32_t length;
3716  int hw = BKPT_SOFT;
3717 
3718  switch (CMD_ARGC) {
3719  case 0:
3721 
3722  case 2:
3723  asid = 0;
3724  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3725  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3726  return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3727 
3728  case 3:
3729  if (strcmp(CMD_ARGV[2], "hw") == 0) {
3730  hw = BKPT_HARD;
3731  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3732  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3733  asid = 0;
3734  return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3735  } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3736  hw = BKPT_HARD;
3737  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3738  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3739  addr = 0;
3740  return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3741  }
3742  /* fallthrough */
3743  case 4:
3744  hw = BKPT_HARD;
3745  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3746  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3747  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3748  return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3749 
3750  default:
3752  }
3753 }
3754 
3755 COMMAND_HANDLER(handle_rbp_command)
3756 {
3757  if (CMD_ARGC != 1)
3759 
3761  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3762 
3763  struct target *target = get_current_target(CMD_CTX);
3764  breakpoint_remove(target, addr);
3765 
3766  return ERROR_OK;
3767 }
3768 
3769 COMMAND_HANDLER(handle_wp_command)
3770 {
3771  struct target *target = get_current_target(CMD_CTX);
3772 
3773  if (CMD_ARGC == 0) {
3774  struct watchpoint *watchpoint = target->watchpoints;
3775 
3776  while (watchpoint) {
3778  ", len: 0x%8.8" PRIx32
3779  ", r/w/a: %i, value: 0x%8.8" PRIx32
3780  ", mask: 0x%8.8" PRIx32,
3781  watchpoint->address,
3782  watchpoint->length,
3783  (int)watchpoint->rw,
3784  watchpoint->value,
3785  watchpoint->mask);
3786  watchpoint = watchpoint->next;
3787  }
3788  return ERROR_OK;
3789  }
3790 
3791  enum watchpoint_rw type = WPT_ACCESS;
3792  uint32_t addr = 0;
3793  uint32_t length = 0;
3794  uint32_t data_value = 0x0;
3795  uint32_t data_mask = 0xffffffff;
3796 
3797  switch (CMD_ARGC) {
3798  case 5:
3799  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3800  /* fall through */
3801  case 4:
3802  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3803  /* fall through */
3804  case 3:
3805  switch (CMD_ARGV[2][0]) {
3806  case 'r':
3807  type = WPT_READ;
3808  break;
3809  case 'w':
3810  type = WPT_WRITE;
3811  break;
3812  case 'a':
3813  type = WPT_ACCESS;
3814  break;
3815  default:
3816  LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3818  }
3819  /* fall through */
3820  case 2:
3821  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3822  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3823  break;
3824 
3825  default:
3827  }
3828 
3829  int retval = watchpoint_add(target, addr, length, type,
3830  data_value, data_mask);
3831  if (ERROR_OK != retval)
3832  LOG_ERROR("Failure setting watchpoints");
3833 
3834  return retval;
3835 }
3836 
3837 COMMAND_HANDLER(handle_rwp_command)
3838 {
3839  if (CMD_ARGC != 1)
3841 
3842  uint32_t addr;
3843  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3844 
3845  struct target *target = get_current_target(CMD_CTX);
3846  watchpoint_remove(target, addr);
3847 
3848  return ERROR_OK;
3849 }
3850 
3857 COMMAND_HANDLER(handle_virt2phys_command)
3858 {
3859  if (CMD_ARGC != 1)
3861 
3862  target_addr_t va;
3864  target_addr_t pa;
3865 
3866  struct target *target = get_current_target(CMD_CTX);
3867  int retval = target->type->virt2phys(target, va, &pa);
3868  if (retval == ERROR_OK)
3869  command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3870 
3871  return retval;
3872 }
3873 
3874 static void writeData(FILE *f, const void *data, size_t len)
3875 {
3876  size_t written = fwrite(data, 1, len, f);
3877  if (written != len)
3878  LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3879 }
3880 
3881 static void writeLong(FILE *f, int l, struct target *target)
3882 {
3883  uint8_t val[4];
3884 
3885  target_buffer_set_u32(target, val, l);
3886  writeData(f, val, 4);
3887 }
3888 
3889 static void writeString(FILE *f, char *s)
3890 {
3891  writeData(f, s, strlen(s));
3892 }
3893 
3894 typedef unsigned char UNIT[2]; /* unit of profiling */
3895 
3896 /* Dump a gmon.out histogram file. */
3897 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3898  uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3899 {
3900  uint32_t i;
3901  FILE *f = fopen(filename, "w");
3902  if (f == NULL)
3903  return;
3904  writeString(f, "gmon");
3905  writeLong(f, 0x00000001, target); /* Version */
3906  writeLong(f, 0, target); /* padding */
3907  writeLong(f, 0, target); /* padding */
3908  writeLong(f, 0, target); /* padding */
3909 
3910  uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3911  writeData(f, &zero, 1);
3912 
3913  /* figure out bucket size */
3914  uint32_t min;
3915  uint32_t max;
3916  if (with_range) {
3917  min = start_address;
3918  max = end_address;
3919  } else {
3920  min = samples[0];
3921  max = samples[0];
3922  for (i = 0; i < sampleNum; i++) {
3923  if (min > samples[i])
3924  min = samples[i];
3925  if (max < samples[i])
3926  max = samples[i];
3927  }
3928 
3929  /* max should be (largest sample + 1)
3930  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3931  max++;
3932  }
3933 
3934  int addressSpace = max - min;
3935  assert(addressSpace >= 2);
3936 
3937  /* FIXME: What is the reasonable number of buckets?
3938  * The profiling result will be more accurate if there are enough buckets. */
3939  static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3940  uint32_t numBuckets = addressSpace / sizeof(UNIT);
3941  if (numBuckets > maxBuckets)
3942  numBuckets = maxBuckets;
3943  int *buckets = malloc(sizeof(int) * numBuckets);
3944  if (buckets == NULL) {
3945  fclose(f);
3946  return;
3947  }
3948  memset(buckets, 0, sizeof(int) * numBuckets);
3949  for (i = 0; i < sampleNum; i++) {
3950  uint32_t address = samples[i];
3951 
3952  if ((address < min) || (max <= address))
3953  continue;
3954 
3955  long long a = address - min;
3956  long long b = numBuckets;
3957  long long c = addressSpace;
3958  int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3959  buckets[index_t]++;
3960  }
3961 
3962  /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3963  writeLong(f, min, target); /* low_pc */
3964  writeLong(f, max, target); /* high_pc */
3965  writeLong(f, numBuckets, target); /* # of buckets */
3966  float sample_rate = sampleNum / (duration_ms / 1000.0);
3967  writeLong(f, sample_rate, target);
3968  writeString(f, "seconds");
3969  for (i = 0; i < (15-strlen("seconds")); i++)
3970  writeData(f, &zero, 1);
3971  writeString(f, "s");
3972 
3973  /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3974 
3975  char *data = malloc(2 * numBuckets);
3976  if (data != NULL) {
3977  for (i = 0; i < numBuckets; i++) {
3978  int val;
3979  val = buckets[i];
3980  if (val > 65535)
3981  val = 65535;
3982  data[i * 2] = val&0xff;
3983  data[i * 2 + 1] = (val >> 8) & 0xff;
3984  }
3985  free(buckets);
3986  writeData(f, data, numBuckets * 2);
3987  free(data);
3988  } else
3989  free(buckets);
3990 
3991  fclose(f);
3992 }
3993 
3994 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3995  * which will be used as a random sampling of PC */
3996 COMMAND_HANDLER(handle_profile_command)
3997 {
3998  struct target *target = get_current_target(CMD_CTX);
3999 
4000  if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4002 
4003  const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4004  uint32_t offset;
4005  uint32_t num_of_samples;
4006  int retval = ERROR_OK;
4007 
4008  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4009 
4010  uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4011  if (samples == NULL) {
4012  LOG_ERROR("No memory to store samples.");
4013  return ERROR_FAIL;
4014  }
4015 
4016  uint64_t timestart_ms = timeval_ms();
4022  retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4023  &num_of_samples, offset);
4024  if (retval != ERROR_OK) {
4025  free(samples);
4026  return retval;
4027  }
4028  uint32_t duration_ms = timeval_ms() - timestart_ms;
4029 
4030  assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4031 
4032  retval = target_poll(target);
4033  if (retval != ERROR_OK) {
4034  free(samples);
4035  return retval;
4036  }
4037  if (target->state == TARGET_RUNNING) {
4038  retval = target_halt(target);
4039  if (retval != ERROR_OK) {
4040  free(samples);
4041  return retval;
4042  }
4043  }
4044 
4045  retval = target_poll(target);
4046  if (retval != ERROR_OK) {
4047  free(samples);
4048  return retval;
4049  }
4050 
4051  uint32_t start_address = 0;
4052  uint32_t end_address = 0;
4053  bool with_range = false;
4054  if (CMD_ARGC == 4) {
4055  with_range = true;
4056  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4057  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4058  }
4059 
4060  write_gmon(samples, num_of_samples, CMD_ARGV[1],
4061  with_range, start_address, end_address, target, duration_ms);
4062  command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4063 
4064  free(samples);
4065  return retval;
4066 }
4067 
4068 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4069 {
4070  char *namebuf;
4071  Jim_Obj *nameObjPtr, *valObjPtr;
4072  int result;
4073 
4074  namebuf = alloc_printf("%s(%d)", varname, idx);
4075  if (!namebuf)
4076  return JIM_ERR;
4077 
4078  nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4079  valObjPtr = Jim_NewIntObj(interp, val);
4080  if (!nameObjPtr || !valObjPtr) {
4081  free(namebuf);
4082  return JIM_ERR;
4083  }
4084 
4085  Jim_IncrRefCount(nameObjPtr);
4086  Jim_IncrRefCount(valObjPtr);
4087  result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4088  Jim_DecrRefCount(interp, nameObjPtr);
4089  Jim_DecrRefCount(interp, valObjPtr);
4090  free(namebuf);
4091  /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4092  return result;
4093 }
4094 
4095 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4096 {
4097  struct command_context *context;
4098  struct target *target;
4099 
4100  context = current_command_context(interp);
4101  assert(context != NULL);
4102 
4103  target = get_current_target(context);
4104  if (target == NULL) {
4105  LOG_ERROR("mem2array: no current target");
4106  return JIM_ERR;
4107  }
4108 
4109  return target_mem2array(interp, target, argc - 1, argv + 1);
4110 }
4111 
4112 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4113 {
4114  long l;
4115  uint32_t width;
4116  int len;
4117  uint32_t addr;
4118  uint32_t count;
4119  uint32_t v;
4120  const char *varname;
4121  const char *phys;
4122  bool is_phys;
4123  int n, e, retval;
4124  uint32_t i;
4125 
4126  /* argv[1] = name of array to receive the data
4127  * argv[2] = desired width
4128  * argv[3] = memory address
4129  * argv[4] = count of times to read
4130  */
4131  if (argc < 4 || argc > 5) {
4132  Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4133  return JIM_ERR;
4134  }
4135  varname = Jim_GetString(argv[0], &len);
4136  /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4137 
4138  e = Jim_GetLong(interp, argv[1], &l);
4139  width = l;
4140  if (e != JIM_OK)
4141  return e;
4142 
4143  e = Jim_GetLong(interp, argv[2], &l);
4144  addr = l;
4145  if (e != JIM_OK)
4146  return e;
4147  e = Jim_GetLong(interp, argv[3], &l);
4148  len = l;
4149  if (e != JIM_OK)
4150  return e;
4151  is_phys = false;
4152  if (argc > 4) {
4153  phys = Jim_GetString(argv[4], &n);
4154  if (!strncmp(phys, "phys", n))
4155  is_phys = true;
4156  else
4157  return JIM_ERR;
4158  }
4159  switch (width) {
4160  case 8:
4161  width = 1;
4162  break;
4163  case 16:
4164  width = 2;
4165  break;
4166  case 32:
4167  width = 4;
4168  break;
4169  default:
4170  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4171  Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4172  return JIM_ERR;
4173  }
4174  if (len == 0) {
4175  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4176  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4177  return JIM_ERR;
4178  }
4179  if ((addr + (len * width)) < addr) {
4180  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4181  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4182  return JIM_ERR;
4183  }
4184  /* absurd transfer size? */
4185  if (len > 65536) {
4186  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4187  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4188  return JIM_ERR;
4189  }
4190 
4191  if ((width == 1) ||
4192  ((width == 2) && ((addr & 1) == 0)) ||
4193  ((width == 4) && ((addr & 3) == 0))) {
4194  /* all is well */
4195  } else {
4196  char buf[100];
4197  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4198  sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4199  addr,
4200  width);
4201  Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4202  return JIM_ERR;
4203  }
4204 
4205  /* Transfer loop */
4206 
4207  /* index counter */
4208  n = 0;
4209 
4210  size_t buffersize = 4096;
4211  uint8_t *buffer = malloc(buffersize);
4212  if (buffer == NULL)
4213  return JIM_ERR;
4214 
4215  /* assume ok */
4216  e = JIM_OK;
4217  while (len) {
4218  /* Slurp... in buffer size chunks */
4219 
4220  count = len; /* in objects.. */
4221  if (count > (buffersize / width))
4222  count = (buffersize / width);
4223 
4224  if (is_phys)
4225  retval = target_read_phys_memory(target, addr, width, count, buffer);
4226  else
4227  retval = target_read_memory(target, addr, width, count, buffer);
4228  if (retval != ERROR_OK) {
4229  /* BOO !*/
4230  LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4231  addr,
4232  width,
4233  count);
4234  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4235  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4236  e = JIM_ERR;
4237  break;
4238  } else {
4239  v = 0; /* shut up gcc */
4240  for (i = 0; i < count ; i++, n++) {
4241  switch (width) {
4242  case 4:
4243  v = target_buffer_get_u32(target, &buffer[i*width]);
4244  break;
4245  case 2:
4246  v = target_buffer_get_u16(target, &buffer[i*width]);
4247  break;
4248  case 1:
4249  v = buffer[i] & 0x0ff;
4250  break;
4251  }
4252  new_int_array_element(interp, varname, n, v);
4253  }
4254  len -= count;
4255  addr += count * width;
4256  }
4257  }
4258 
4259  free(buffer);
4260 
4261  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4262 
4263  return e;
4264 }
4265 
4266 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4267 {
4268  char *namebuf;
4269  Jim_Obj *nameObjPtr, *valObjPtr;
4270  int result;
4271  long l;
4272 
4273  namebuf = alloc_printf("%s(%d)", varname, idx);
4274  if (!namebuf)
4275  return JIM_ERR;
4276 
4277  nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4278  if (!nameObjPtr) {
4279  free(namebuf);
4280  return JIM_ERR;
4281  }
4282 
4283  Jim_IncrRefCount(nameObjPtr);
4284  valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4285  Jim_DecrRefCount(interp, nameObjPtr);
4286  free(namebuf);
4287  if (valObjPtr == NULL)
4288  return JIM_ERR;
4289 
4290  result = Jim_GetLong(interp, valObjPtr, &l);
4291  /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4292  *val = l;
4293  return result;
4294 }
4295 
4296 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4297 {
4298  struct command_context *context;
4299  struct target *target;
4300 
4301  context = current_command_context(interp);
4302  assert(context != NULL);
4303 
4304  target = get_current_target(context);
4305  if (target == NULL) {
4306  LOG_ERROR("array2mem: no current target");
4307  return JIM_ERR;
4308  }
4309 
4310  return target_array2mem(interp, target, argc-1, argv + 1);
4311 }
4312 
4313 static int target_array2mem(Jim_Interp *interp, struct target *target,
4314  int argc, Jim_Obj *const *argv)
4315 {
4316  long l;
4317  uint32_t width;
4318  int len;
4319  uint32_t addr;
4320  uint32_t count;
4321  uint32_t v;
4322  const char *varname;
4323  const char *phys;
4324  bool is_phys;
4325  int n, e, retval;
4326  uint32_t i;
4327 
4328  /* argv[1] = name of array to get the data
4329  * argv[2] = desired width
4330  * argv[3] = memory address
4331  * argv[4] = count to write
4332  */
4333  if (argc < 4 || argc > 5) {
4334  Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4335  return JIM_ERR;
4336  }
4337  varname = Jim_GetString(argv[0], &len);
4338  /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4339 
4340  e = Jim_GetLong(interp, argv[1], &l);
4341  width = l;
4342  if (e != JIM_OK)
4343  return e;
4344 
4345  e = Jim_GetLong(interp, argv[2], &l);
4346  addr = l;
4347  if (e != JIM_OK)
4348  return e;
4349  e = Jim_GetLong(interp, argv[3], &l);
4350  len = l;
4351  if (e != JIM_OK)
4352  return e;
4353  is_phys = false;
4354  if (argc > 4) {
4355  phys = Jim_GetString(argv[4], &n);
4356  if (!strncmp(phys, "phys", n))
4357  is_phys = true;
4358  else
4359  return JIM_ERR;
4360  }
4361  switch (width) {
4362  case 8:
4363  width = 1;
4364  break;
4365  case 16:
4366  width = 2;
4367  break;
4368  case 32:
4369  width = 4;
4370  break;
4371  default:
4372  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4373  Jim_AppendStrings(interp, Jim_GetResult(interp),
4374  "Invalid width param, must be 8/16/32", NULL);
4375  return JIM_ERR;
4376  }
4377  if (len == 0) {
4378  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4379  Jim_AppendStrings(interp, Jim_GetResult(interp),
4380  "array2mem: zero width read?", NULL);
4381  return JIM_ERR;
4382  }
4383  if ((addr + (len * width)) < addr) {
4384  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4385  Jim_AppendStrings(interp, Jim_GetResult(interp),
4386  "array2mem: addr + len - wraps to zero?", NULL);
4387  return JIM_ERR;
4388  }
4389  /* absurd transfer size? */
4390  if (len > 65536) {
4391  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4392  Jim_AppendStrings(interp, Jim_GetResult(interp),
4393  "array2mem: absurd > 64K item request", NULL);
4394  return JIM_ERR;
4395  }
4396 
4397  if ((width == 1) ||
4398  ((width == 2) && ((addr & 1) == 0)) ||
4399  ((width == 4) && ((addr & 3) == 0))) {
4400  /* all is well */
4401  } else {
4402  char buf[100];
4403  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4404  sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4405  addr,
4406  width);
4407  Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4408  return JIM_ERR;
4409  }
4410 
4411  /* Transfer loop */
4412 
4413  /* index counter */
4414  n = 0;
4415  /* assume ok */
4416  e = JIM_OK;
4417 
4418  size_t buffersize = 4096;
4419  uint8_t *buffer = malloc(buffersize);
4420  if (buffer == NULL)
4421  return JIM_ERR;
4422 
4423  while (len) {
4424  /* Slurp... in buffer size chunks */
4425 
4426  count = len; /* in objects.. */
4427  if (count > (buffersize / width))
4428  count = (buffersize / width);
4429 
4430  v = 0; /* shut up gcc */
4431  for (i = 0; i < count; i++, n++) {
4432  get_int_array_element(interp, varname, n, &v);
4433  switch (width) {
4434  case 4:
4435  target_buffer_set_u32(target, &buffer[i * width], v);
4436  break;
4437  case 2:
4438  target_buffer_set_u16(target, &buffer[i * width], v);
4439  break;
4440  case 1:
4441  buffer[i] = v & 0x0ff;
4442  break;
4443  }
4444  }
4445  len -= count;
4446 
4447  if (is_phys)
4448  retval = target_write_phys_memory(target, addr, width, count, buffer);
4449  else
4450  retval = target_write_memory(target, addr, width, count, buffer);
4451  if (retval != ERROR_OK) {
4452  /* BOO !*/
4453  LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4454  addr,
4455  width,
4456  count);
4457  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4458  Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4459  e = JIM_ERR;
4460  break;
4461  }
4462  addr += count * width;
4463  }
4464 
4465  free(buffer);
4466 
4467  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4468 
4469  return e;
4470 }
4471 
4472 /* FIX? should we propagate errors here rather than printing them
4473  * and continuing?
4474  */
4475 void target_handle_event(struct target *target, enum target_event e)
4476 {
4477  struct target_event_action *teap;
4478 
4479  for (teap = target->event_action; teap != NULL; teap = teap->next) {
4480  if (teap->event == e) {
4481  LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4482  target->target_number,
4483  target_name(target),
4484  target_type_name(target),
4485  e,
4486  Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4487  Jim_GetString(teap->body, NULL));
4488 
4489  /* Override current target by the target an event
4490  * is issued from (lot of scripts need it).
4491  * Return back to previous override as soon
4492  * as the handler processing is done */
4493  struct command_context *cmd_ctx = current_command_context(teap->interp);
4494  struct target *saved_target_override = cmd_ctx->current_target_override;
4495  cmd_ctx->current_target_override = target;
4496 
4497  if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4498  Jim_MakeErrorMessage(teap->interp);
4499  command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4500  }
4501 
4502  cmd_ctx->current_target_override = saved_target_override;
4503  }
4504  }
4505 }
4506 
4510 bool target_has_event_action(struct target *target, enum target_event event)
4511 {
4512  struct target_event_action *teap;
4513 
4514  for (teap = target->event_action; teap != NULL; teap = teap->next) {
4515  if (teap->event == event)
4516  return true;
4517  }
4518  return false;
4519 }
4520 
4534 };
4535 
4537  { .name = "-type", .value = TCFG_TYPE },
4538  { .name = "-event", .value = TCFG_EVENT },
4539  { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4540  { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4541  { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4542  { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4543  { .name = "-endian" , .value = TCFG_ENDIAN },
4544  { .name = "-coreid", .value = TCFG_COREID },
4545  { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4546  { .name = "-dbgbase", .value = TCFG_DBGBASE },
4547  { .name = "-rtos", .value = TCFG_RTOS },
4548  { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4549  { .name = NULL, .value = -1 }
4550 };
4551 
4552 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4553 {
4554  Jim_Nvp *n;
4555  Jim_Obj *o;
4556  jim_wide w;
4557  int e;
4558 
4559  /* parse config or cget options ... */
4560  while (goi->argc > 0) {
4561  Jim_SetEmptyResult(goi->interp);
4562  /* Jim_GetOpt_Debug(goi); */
4563 
4564  if (target->type->target_jim_configure) {
4565  /* target defines a configure function */
4566  /* target gets first dibs on parameters */
4567  e = (*(target->type->target_jim_configure))(target, goi);
4568  if (e == JIM_OK) {
4569  /* more? */
4570  continue;
4571  }
4572  if (e == JIM_ERR) {
4573  /* An error */
4574  return e;
4575  }
4576  /* otherwise we 'continue' below */
4577  }
4578  e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4579  if (e != JIM_OK) {
4580  Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4581  return e;
4582  }
4583  switch (n->value) {
4584  case TCFG_TYPE:
4585  /* not setable */
4586  if (goi->isconfigure) {
4587  Jim_SetResultFormatted(goi->interp,
4588  "not settable: %s", n->name);
4589  return JIM_ERR;
4590  } else {
4591 no_params:
4592  if (goi->argc != 0) {
4593  Jim_WrongNumArgs(goi->interp,
4594  goi->argc, goi->argv,
4595  "NO PARAMS");
4596  return JIM_ERR;
4597  }
4598  }
4599  Jim_SetResultString(goi->interp,
4600  target_type_name(target), -1);
4601  /* loop for more */
4602  break;
4603  case TCFG_EVENT:
4604  if (goi->argc == 0) {
4605  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4606  return JIM_ERR;
4607  }
4608 
4609  e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4610  if (e != JIM_OK) {
4611  Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4612  return e;
4613  }
4614 
4615  if (goi->isconfigure) {
4616  if (goi->argc != 1) {
4617  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4618  return JIM_ERR;
4619  }
4620  } else {
4621  if (goi->argc != 0) {
4622  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4623  return JIM_ERR;
4624  }
4625  }
4626 
4627  {
4628  struct target_event_action *teap;
4629 
4630  teap = target->event_action;
4631  /* replace existing? */
4632  while (teap) {
4633  if (teap->event == (enum target_event)n->value)
4634  break;
4635  teap = teap->next;
4636  }
4637 
4638  if (goi->isconfigure) {
4639  bool replace = true;
4640  if (teap == NULL) {
4641  /* create new */
4642  teap = calloc(1, sizeof(*teap));
4643  replace = false;
4644  }
4645  teap->event = n->value;
4646  teap->interp = goi->interp;
4647  Jim_GetOpt_Obj(goi, &o);
4648  if (teap->body)
4649  Jim_DecrRefCount(teap->interp, teap->body);
4650  teap->body = Jim_DuplicateObj(goi->interp, o);
4651  /*
4652  * FIXME:
4653  * Tcl/TK - "tk events" have a nice feature.
4654  * See the "BIND" command.
4655  * We should support that here.
4656  * You can specify %X and %Y in the event code.
4657  * The idea is: %T - target name.
4658  * The idea is: %N - target number
4659  * The idea is: %E - event name.
4660  */
4661  Jim_IncrRefCount(teap->body);
4662 
4663  if (!replace) {
4664  /* add to head of event list */
4665  teap->next = target->event_action;
4666  target->event_action = teap;
4667  }
4668  Jim_SetEmptyResult(goi->interp);
4669  } else {
4670  /* get */
4671  if (teap == NULL)
4672  Jim_SetEmptyResult(goi->interp);
4673  else
4674  Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4675  }
4676  }
4677  /* loop for more */
4678  break;
4679 
4680  case TCFG_WORK_AREA_VIRT:
4681  if (goi->isconfigure) {
4683  e = Jim_GetOpt_Wide(goi, &w);
4684  if (e != JIM_OK)
4685  return e;
4686  target->working_area_virt = w;
4687  target->working_area_virt_spec = true;
4688  } else {
4689  if (goi->argc != 0)
4690  goto no_params;
4691  }
4692  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4693  /* loop for more */
4694  break;
4695 
4696  case TCFG_WORK_AREA_PHYS:
4697  if (goi->isconfigure) {
4699  e = Jim_GetOpt_Wide(goi, &w);
4700  if (e != JIM_OK)
4701  return e;
4702  target->working_area_phys = w;
4703  target->working_area_phys_spec = true;
4704  } else {
4705  if (goi->argc != 0)
4706  goto no_params;
4707  }
4708  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4709  /* loop for more */
4710  break;
4711 
4712  case TCFG_WORK_AREA_SIZE:
4713  if (goi->isconfigure) {
4715  e = Jim_GetOpt_Wide(goi, &w);
4716  if (e != JIM_OK)
4717  return e;
4718  target->working_area_size = w;
4719  } else {
4720  if (goi->argc != 0)
4721  goto no_params;
4722  }
4723  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4724  /* loop for more */
4725  break;
4726 
4727  case TCFG_WORK_AREA_BACKUP:
4728  if (goi->isconfigure) {
4730  e = Jim_GetOpt_Wide(goi, &w);
4731  if (e != JIM_OK)
4732  return e;
4733  /* make this exactly 1 or 0 */
4734  target->backup_working_area = (!!w);
4735  } else {
4736  if (goi->argc != 0)
4737  goto no_params;
4738  }
4739  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4740  /* loop for more e*/
4741  break;
4742 
4743 
4744  case TCFG_ENDIAN:
4745  if (goi->isconfigure) {
4746  e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4747  if (e != JIM_OK) {
4748  Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4749  return e;
4750  }
4751  target->endianness = n->value;
4752  } else {
4753  if (goi->argc != 0)
4754  goto no_params;
4755  }
4756  n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4757  if (n->name == NULL) {
4758  target->endianness = TARGET_LITTLE_ENDIAN;
4759  n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4760  }
4761  Jim_SetResultString(goi->interp, n->name, -1);
4762  /* loop for more */
4763  break;
4764 
4765  case TCFG_COREID:
4766  if (goi->isconfigure) {
4767  e = Jim_GetOpt_Wide(goi, &w);
4768  if (e != JIM_OK)
4769  return e;
4770  target->coreid = (int32_t)w;
4771  } else {
4772  if (goi->argc != 0)
4773  goto no_params;
4774  }
4775  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4776  /* loop for more */
4777  break;
4778 
4779  case TCFG_CHAIN_POSITION:
4780  if (goi->isconfigure) {
4781  Jim_Obj *o_t;
4782  struct jtag_tap *tap;
4783 
4784  if (target->has_dap) {
4785  Jim_SetResultString(goi->interp,
4786  "target requires -dap parameter instead of -chain-position!", -1);
4787  return JIM_ERR;
4788  }
4789 
4791  e = Jim_GetOpt_Obj(goi, &o_t);
4792  if (e != JIM_OK)
4793  return e;
4794  tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4795  if (tap == NULL)
4796  return JIM_ERR;
4797  target->tap = tap;
4798  target->tap_configured = true;
4799  } else {
4800  if (goi->argc != 0)
4801  goto no_params;
4802  }
4803  Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4804  /* loop for more e*/
4805  break;
4806  case TCFG_DBGBASE:
4807  if (goi->isconfigure) {
4808  e = Jim_GetOpt_Wide(goi, &w);
4809  if (e != JIM_OK)
4810  return e;
4811  target->dbgbase = (uint32_t)w;
4812  target->dbgbase_set = true;
4813  } else {
4814  if (goi->argc != 0)
4815  goto no_params;
4816  }
4817  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4818  /* loop for more */
4819  break;
4820  case TCFG_RTOS:
4821  /* RTOS */
4822  {
4823  int result = rtos_create(goi, target);
4824  if (result != JIM_OK)
4825  return result;
4826  }
4827  /* loop for more */
4828  break;
4829 
4830  case TCFG_DEFER_EXAMINE:
4831  /* DEFER_EXAMINE */
4832  target->defer_examine = true;
4833  /* loop for more */
4834  break;
4835 
4836  }
4837  } /* while (goi->argc) */
4838 
4839 
4840  /* done - we return */
4841  return JIM_OK;
4842 }
4843 
4844 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4845 {
4846  Jim_GetOptInfo goi;
4847 
4848  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4849  goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4850  if (goi.argc < 1) {
4851  Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4852  "missing: -option ...");
4853  return JIM_ERR;
4854  }
4855  struct target *target = Jim_CmdPrivData(goi.interp);
4856  return target_configure(&goi, target);
4857 }
4858 
4859 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4860 {
4861  const char *cmd_name = Jim_GetString(argv[0], NULL);
4862 
4863  Jim_GetOptInfo goi;
4864  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4865 
4866  if (goi.argc < 2 || goi.argc > 4) {
4867  Jim_SetResultFormatted(goi.interp,
4868  "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4869  return JIM_ERR;
4870  }
4871 
4872  target_write_fn fn;
4873  fn = target_write_memory;
4874 
4875  int e;
4876  if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4877  /* consume it */
4878  struct Jim_Obj *obj;
4879  e = Jim_GetOpt_Obj(&goi, &obj);
4880  if (e != JIM_OK)
4881  return e;
4882 
4884  }
4885 
4886  jim_wide a;
4887  e = Jim_GetOpt_Wide(&goi, &a);
4888  if (e != JIM_OK)
4889  return e;
4890 
4891  jim_wide b;
4892  e = Jim_GetOpt_Wide(&goi, &b);
4893  if (e != JIM_OK)
4894  return e;
4895 
4896  jim_wide c = 1;
4897  if (goi.argc == 1) {
4898  e = Jim_GetOpt_Wide(&goi, &c);
4899  if (e != JIM_OK)
4900  return e;
4901  }
4902 
4903  /* all args must be consumed */
4904  if (goi.argc != 0)
4905  return JIM_ERR;
4906 
4907  struct target *target = Jim_CmdPrivData(goi.interp);
4908  unsigned data_size;
4909  if (strcasecmp(cmd_name, "mww") == 0)
4910  data_size = 4;
4911  else if (strcasecmp(cmd_name, "mwh") == 0)
4912  data_size = 2;
4913  else if (strcasecmp(cmd_name, "mwb") == 0)
4914  data_size = 1;
4915  else {
4916  LOG_ERROR("command '%s' unknown: ", cmd_name);
4917  return JIM_ERR;
4918  }
4919 
4920  return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4921 }
4922 
4951 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4952 {
4953  const char *cmd_name = Jim_GetString(argv[0], NULL);
4954 
4955  Jim_GetOptInfo goi;
4956  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4957 
4958  if ((goi.argc < 1) || (goi.argc > 3)) {
4959  Jim_SetResultFormatted(goi.interp,
4960  "usage: %s [phys] <address> [<count>]", cmd_name);
4961  return JIM_ERR;
4962  }
4963 
4964  int (*fn)(struct target *target,
4965  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4966  fn = target_read_memory;
4967 
4968  int e;
4969  if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4970  /* consume it */
4971  struct Jim_Obj *obj;
4972  e = Jim_GetOpt_Obj(&goi, &obj);
4973  if (e != JIM_OK)
4974  return e;
4975 
4977  }
4978 
4979  /* Read address parameter */
4980  jim_wide addr;
4981  e = Jim_GetOpt_Wide(&goi, &addr);
4982  if (e != JIM_OK)
4983  return JIM_ERR;
4984 
4985  /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4986  jim_wide count;
4987  if (goi.argc == 1) {
4988  e = Jim_GetOpt_Wide(&goi, &count);
4989  if (e != JIM_OK)
4990  return JIM_ERR;
4991  } else
4992  count = 1;
4993 
4994  /* all args must be consumed */
4995  if (goi.argc != 0)
4996  return JIM_ERR;
4997 
4998  jim_wide dwidth = 1; /* shut up gcc */
4999  if (strcasecmp(cmd_name, "mdw") == 0)
5000  dwidth = 4;
5001  else if (strcasecmp(cmd_name, "mdh") == 0)
5002  dwidth = 2;
5003  else if (strcasecmp(cmd_name, "mdb") == 0)
5004  dwidth = 1;
5005  else {
5006  LOG_ERROR("command '%s' unknown: ", cmd_name);
5007  return JIM_ERR;
5008  }
5009 
5010  /* convert count to "bytes" */
5011  int bytes = count * dwidth;
5012 
5013  struct target *target = Jim_CmdPrivData(goi.interp);
5014  uint8_t target_buf[32];
5015  jim_wide x, y, z;
5016  while (bytes > 0) {
5017  y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5018 
5019  /* Try to read out next block */
5020  e = fn(target, addr, dwidth, y / dwidth, target_buf);
5021 
5022  if (e != ERROR_OK) {
5023  Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5024  return JIM_ERR;
5025  }
5026 
5027  command_print_sameline(NULL, "0x%08x ", (int)(addr));
5028  switch (dwidth) {
5029  case 4:
5030  for (x = 0; x < 16 && x < y; x += 4) {
5031  z = target_buffer_get_u32(target, &(target_buf[x]));
5032  command_print_sameline(NULL, "%08x ", (int)(z));
5033  }
5034  for (; (x < 16) ; x += 4)
5036  break;
5037  case 2:
5038  for (x = 0; x < 16 && x < y; x += 2) {
5039  z = target_buffer_get_u16(target, &(target_buf[x]));
5040  command_print_sameline(NULL, "%04x ", (int)(z));
5041  }
5042  for (; (x < 16) ; x += 2)
5044  break;
5045  case 1:
5046  default:
5047  for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5048  z = target_buffer_get_u8(target, &(target_buf[x]));
5049  command_print_sameline(NULL, "%02x ", (int)(z));
5050  }
5051  for (; (x < 16) ; x += 1)
5053  break;
5054  }
5055  /* ascii-ify the bytes */
5056  for (x = 0 ; x < y ; x++) {
5057  if ((target_buf[x] >= 0x20) &&
5058  (target_buf[x] <= 0x7e)) {
5059  /* good */
5060  } else {
5061  /* smack it */
5062  target_buf[x] = '.';
5063  }
5064  }
5065  /* space pad */
5066  while (x < 16) {
5067  target_buf[x] = ' ';
5068  x++;
5069  }
5070  /* terminate */
5071  target_buf[16] = 0;
5072  /* print - with a newline */
5073  command_print_sameline(NULL, "%s\n", target_buf);
5074  /* NEXT... */
5075  bytes -= 16;
5076  addr += 16;
5077  }
5078  return JIM_OK;
5079 }
5080 
5081 static int jim_target_mem2array(Jim_Interp *interp,
5082  int argc, Jim_Obj *const *argv)
5083 {
5084  struct target *target = Jim_CmdPrivData(interp);
5085  return target_mem2array(interp, target, argc - 1, argv + 1);
5086 }
5087 
5088 static int jim_target_array2mem(Jim_Interp *interp,
5089  int argc, Jim_Obj *const *argv)
5090 {
5091  struct target *target = Jim_CmdPrivData(interp);
5092  return target_array2mem(interp, target, argc - 1, argv + 1);
5093 }
5094 
5095 static int jim_target_tap_disabled(Jim_Interp *interp)
5096 {
5097  Jim_SetResultFormatted(interp, "[TAP is disabled]");
5098  return JIM_ERR;
5099 }
5100 
5101 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5102 {
5103  bool allow_defer = false;
5104 
5105  Jim_GetOptInfo goi;
5106  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5107  if (goi.argc > 1) {
5108  const char *cmd_name = Jim_GetString(argv[0], NULL);
5109  Jim_SetResultFormatted(goi.interp,
5110  "usage: %s ['allow-defer']", cmd_name);
5111  return JIM_ERR;
5112  }
5113  if (goi.argc > 0 &&
5114  strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5115  /* consume it */
5116  struct Jim_Obj *obj;
5117  int e = Jim_GetOpt_Obj(&goi, &obj);
5118  if (e != JIM_OK)
5119  return e;
5120  allow_defer = true;
5121  }
5122 
5123  struct target *target = Jim_CmdPrivData(interp);
5124  if (!target->tap->enabled)
5125  return jim_target_tap_disabled(interp);
5126 
5127  if (allow_defer && target->defer_examine) {
5128  LOG_INFO("Deferring arp_examine of %s", target_name(target));
5129  LOG_INFO("Use arp_examine command to examine it manually!");
5130  return JIM_OK;
5131  }
5132 
5133  int e = target->type->examine(target);
5134  if (e != ERROR_OK)
5135  return JIM_ERR;
5136  return JIM_OK;
5137 }
5138 
5139 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5140 {
5141  struct target *target = Jim_CmdPrivData(interp);
5142 
5143  Jim_SetResultBool(interp, target_was_examined(target));
5144  return JIM_OK;
5145 }
5146 
5147 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5148 {
5149  struct target *target = Jim_CmdPrivData(interp);
5150 
5151  Jim_SetResultBool(interp, target->defer_examine);
5152  return JIM_OK;
5153 }
5154 
5155 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5156 {
5157  if (argc != 1) {
5158  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5159  return JIM_ERR;
5160  }
5161  struct target *target = Jim_CmdPrivData(interp);
5162 
5164  return JIM_ERR;
5165 
5166  return JIM_OK;
5167 }
5168 
5169 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5170 {
5171  if (argc != 1) {
5172  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5173  return JIM_ERR;
5174  }
5175  struct target *target = Jim_CmdPrivData(interp);
5176  if (!target->tap->enabled)
5177  return jim_target_tap_disabled(interp);
5178 
5179  int e;
5180  if (!(target_was_examined(target)))
5182  else
5183  e = target->type->poll(target);
5184  if (e != ERROR_OK)
5185  return JIM_ERR;
5186  return JIM_OK;
5187 }
5188 
5189 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5190 {
5191  Jim_GetOptInfo goi;
5192  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5193 
5194  if (goi.argc != 2) {
5195  Jim_WrongNumArgs(interp, 0, argv,
5196  "([tT]|[fF]|assert|deassert) BOOL");
5197  return JIM_ERR;
5198  }
5199 
5200  Jim_Nvp *n;
5201  int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5202  if (e != JIM_OK) {
5203  Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5204  return e;
5205  }
5206  /* the halt or not param */
5207  jim_wide a;
5208  e = Jim_GetOpt_Wide(&goi, &a);
5209  if (e != JIM_OK)
5210  return e;
5211 
5212  struct target *target = Jim_CmdPrivData(goi.interp);
5213  if (!target->tap->enabled)
5214  return jim_target_tap_disabled(interp);
5215 
5216  if (!target->type->assert_reset || !target->type->deassert_reset) {
5217  Jim_SetResultFormatted(interp,
5218  "No target-specific reset for %s",
5219  target_name(target));
5220  return JIM_ERR;
5221  }
5222 
5223  if (target->defer_examine)
5224  target_reset_examined(target);
5225 
5226  /* determine if we should halt or not. */
5227  target->reset_halt = !!a;
5228  /* When this happens - all workareas are invalid. */
5230 
5231  /* do the assert */
5232  if (n->value == NVP_ASSERT)
5233  e = target->type->assert_reset(target);
5234  else
5235  e = target->type->deassert_reset(target);
5236  return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5237 }
5238 
5239 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5240 {
5241  if (argc != 1) {
5242  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5243  return JIM_ERR;
5244  }
5245  struct target *target = Jim_CmdPrivData(interp);
5246  if (!target->tap->enabled)
5247  return jim_target_tap_disabled(interp);
5248  int e = target->type->halt(target);
5249  return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5250 }
5251 
5252 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5253 {
5254  Jim_GetOptInfo goi;
5255  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5256 
5257  /* params: <name> statename timeoutmsecs */
5258  if (goi.argc != 2) {
5259  const char *cmd_name = Jim_GetString(argv[0], NULL);
5260  Jim_SetResultFormatted(goi.interp,
5261  "%s <state_name> <timeout_in_msec>", cmd_name);
5262  return JIM_ERR;
5263  }
5264 
5265  Jim_Nvp *n;
5266  int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5267  if (e != JIM_OK) {
5268  Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5269  return e;
5270  }
5271  jim_wide a;
5272  e = Jim_GetOpt_Wide(&goi, &a);
5273  if (e != JIM_OK)
5274  return e;
5275  struct target *target = Jim_CmdPrivData(interp);
5276  if (!target->tap->enabled)
5277  return jim_target_tap_disabled(interp);
5278 
5279  e = target_wait_state(target, n->value, a);
5280  if (e != ERROR_OK) {
5281  Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5282  Jim_SetResultFormatted(goi.interp,
5283  "target: %s wait %s fails (%#s) %s",
5284  target_name(target), n->name,
5285  eObj, target_strerror_safe(e));
5286  Jim_FreeNewObj(interp, eObj);
5287  return JIM_ERR;
5288  }
5289  return JIM_OK;
5290 }
5291 /* List for human, Events defined for this target.
5292  * scripts/programs should use 'name cget -event NAME'
5293  */
5294 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5295 {
5296  struct command_context *cmd_ctx = current_command_context(interp);
5297  assert(cmd_ctx != NULL);
5298 
5299  struct target *target = Jim_CmdPrivData(interp);
5300  struct target_event_action *teap = target->event_action;
5301  command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5302  target->target_number,
5303  target_name(target));
5304  command_print(cmd_ctx, "%-25s | Body", "Event");
5305  command_print(cmd_ctx, "------------------------- | "
5306  "----------------------------------------");
5307  while (teap) {
5308  Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5309  command_print(cmd_ctx, "%-25s | %s",
5310  opt->name, Jim_GetString(teap->body, NULL));
5311  teap = teap->next;
5312  }
5313  command_print(cmd_ctx, "***END***");
5314  return JIM_OK;
5315 }
5316 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5317 {
5318  if (argc != 1) {
5319  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5320  return JIM_ERR;
5321  }
5322  struct target *target = Jim_CmdPrivData(interp);
5323  Jim_SetResultString(interp, target_state_name(target), -1);
5324  return JIM_OK;
5325 }
5326 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5327 {
5328  Jim_GetOptInfo goi;
5329  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5330  if (goi.argc != 1) {
5331  const char *cmd_name = Jim_GetString(argv[0], NULL);
5332  Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5333  return JIM_ERR;
5334  }
5335  Jim_Nvp *n;
5336  int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5337  if (e != JIM_OK) {
5338  Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5339  return e;
5340  }
5341  struct target *target = Jim_CmdPrivData(interp);
5342  target_handle_event(target, n->value);
5343  return JIM_OK;
5344 }
5345 
5347  {
5348  .name = "configure",
5349  .mode = COMMAND_CONFIG,
5350  .jim_handler = jim_target_configure,
5351  .help = "configure a new target for use",
5352  .usage = "[target_attribute ...]",
5353  },
5354  {
5355  .name = "cget",
5356  .mode = COMMAND_ANY,
5357  .jim_handler = jim_target_configure,
5358  .help = "returns the specified target attribute",
5359  .usage = "target_attribute",
5360  },
5361  {
5362  .name = "mww",
5363  .mode = COMMAND_EXEC,
5364  .jim_handler = jim_target_mw,
5365  .help = "Write 32-bit word(s) to target memory",
5366  .usage = "address data [count]",
5367  },
5368  {
5369  .name = "mwh",
5370  .mode = COMMAND_EXEC,
5371  .jim_handler = jim_target_mw,
5372  .help = "Write 16-bit half-word(s) to target memory",
5373  .usage = "address data [count]",
5374  },
5375  {
5376  .name = "mwb",
5377  .mode = COMMAND_EXEC,
5378  .jim_handler = jim_target_mw,
5379  .help = "Write byte(s) to target memory",
5380  .usage = "address data [count]",
5381  },
5382  {
5383  .name = "mdw",
5384  .mode = COMMAND_EXEC,
5385  .jim_handler = jim_target_md,
5386  .help = "Display target memory as 32-bit words",
5387  .usage = "address [count]",
5388  },
5389  {
5390  .name = "mdh",
5391  .mode = COMMAND_EXEC,
5392  .jim_handler = jim_target_md,
5393  .help = "Display target memory as 16-bit half-words",
5394  .usage = "address [count]",
5395  },
5396  {
5397  .name = "mdb",
5398  .mode = COMMAND_EXEC,
5399  .jim_handler = jim_target_md,
5400  .help = "Display target memory as 8-bit bytes",
5401  .usage = "address [count]",
5402  },
5403  {
5404  .name = "array2mem",
5405  .mode = COMMAND_EXEC,
5406  .jim_handler = jim_target_array2mem,
5407  .help = "Writes Tcl array of 8/16/32 bit numbers "
5408  "to target memory",
5409  .usage = "arrayname bitwidth address count",
5410  },
5411  {
5412  .name = "mem2array",
5413  .mode = COMMAND_EXEC,
5414  .jim_handler = jim_target_mem2array,
5415  .help = "Loads Tcl array of 8/16/32 bit numbers "
5416  "from target memory",
5417  .usage = "arrayname bitwidth address count",
5418  },
5419  {
5420  .name = "eventlist",
5421  .mode = COMMAND_EXEC,
5422  .jim_handler = jim_target_event_list,
5423  .help = "displays a table of events defined for this target",
5424  },
5425  {
5426  .name = "curstate",
5427  .mode = COMMAND_EXEC,
5428  .jim_handler = jim_target_current_state,
5429  .help = "displays the current state of this target",
5430  },
5431  {
5432  .name = "arp_examine",
5433  .mode = COMMAND_EXEC,
5434  .jim_handler = jim_target_examine,
5435  .help = "used internally for reset processing",
5436  .usage = "arp_examine ['allow-defer']",
5437  },
5438  {
5439  .name = "was_examined",
5440  .mode = COMMAND_EXEC,
5441  .jim_handler = jim_target_was_examined,
5442  .help = "used internally for reset processing",
5443  .usage = "was_examined",
5444  },
5445  {
5446  .name = "examine_deferred",
5447  .mode = COMMAND_EXEC,
5448  .jim_handler = jim_target_examine_deferred,
5449  .help = "used internally for reset processing",
5450  .usage = "examine_deferred",
5451  },
5452  {
5453  .name = "arp_halt_gdb",
5454  .mode = COMMAND_EXEC,
5455  .jim_handler = jim_target_halt_gdb,
5456  .help = "used internally for reset processing to halt GDB",
5457  },
5458  {
5459  .name = "arp_poll",
5460  .mode = COMMAND_EXEC,
5461  .jim_handler = jim_target_poll,
5462  .help = "used internally for reset processing",
5463  },
5464  {
5465  .name = "arp_reset",
5466  .mode = COMMAND_EXEC,
5467  .jim_handler = jim_target_reset,
5468  .help = "used internally for reset processing",
5469  },
5470  {
5471  .name = "arp_halt",
5472  .mode = COMMAND_EXEC,
5473  .jim_handler = jim_target_halt,
5474  .help = "used internally for reset processing",
5475  },
5476  {
5477  .name = "arp_waitstate",
5478  .mode = COMMAND_EXEC,
5479  .jim_handler = jim_target_wait_state,
5480  .help = "used internally for reset processing",
5481  },
5482  {
5483  .name = "invoke-event",
5484  .mode = COMMAND_EXEC,
5485  .jim_handler = jim_target_invoke_event,
5486  .help = "invoke handler for specified event",
5487  .usage = "event_name",
5488  },
5490 };
5491 
5493 {
5494  Jim_Obj *new_cmd;
5495  Jim_Cmd *cmd;
5496  const char *cp;
5497  int e;
5498  int x;
5499  struct target *target;
5500  struct command_context *cmd_ctx;
5501 
5502  cmd_ctx = current_command_context(goi->interp);
5503  assert(cmd_ctx != NULL);
5504 
5505  if (goi->argc < 3) {
5506  Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5507  return JIM_ERR;
5508  }
5509 
5510  /* COMMAND */
5511  Jim_GetOpt_Obj(goi, &new_cmd);
5512  /* does this command exist? */
5513  cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5514  if (cmd) {
5515  cp = Jim_GetString(new_cmd, NULL);
5516  Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5517  return JIM_ERR;
5518  }
5519 
5520  /* TYPE */
5521  e = Jim_GetOpt_String(goi, &cp, NULL);
5522  if (e != JIM_OK)
5523  return e;
5524  struct transport *tr = get_current_transport();
5525  if (tr->override_target) {
5526  e = tr->override_target(&cp);
5527  if (e != ERROR_OK) {
5528  LOG_ERROR("The selected transport doesn't support this target");
5529  return JIM_ERR;
5530  }
5531  LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5532  }
5533  /* now does target type exist */
5534  for (x = 0 ; target_types[x] ; x++) {
5535  if (0 == strcmp(cp, target_types[x]->name)) {
5536  /* found */
5537  break;
5538  }
5539 
5540  /* check for deprecated name */
5541  if (target_types[x]->deprecated_name) {
5542  if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5543  /* found */
5544  LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5545  break;
5546  }
5547  }
5548  }
5549  if (target_types[x] == NULL) {
5550  Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5551  for (x = 0 ; target_types[x] ; x++) {
5552  if (target_types[x + 1]) {
5553  Jim_AppendStrings(goi->interp,
5554  Jim_GetResult(goi->interp),
5555  target_types[x]->name,
5556  ", ", NULL);
5557  } else {
5558  Jim_AppendStrings(goi->interp,
5559  Jim_GetResult(goi->interp),
5560  " or ",
5561  target_types[x]->name, NULL);
5562  }
5563  }
5564  return JIM_ERR;
5565  }
5566 
5567  /* Create it */
5568  target = calloc(1, sizeof(struct target));
5569  /* set target number */
5570  target->target_number = new_target_number();
5571  cmd_ctx->current_target = target;
5572 
5573  /* allocate memory for each unique target type */
5574  target->type = calloc(1, sizeof(struct target_type));
5575 
5576  memcpy(target->type, target_types[x], sizeof(struct target_type));
5577 
5578  /* will be set by "-endian" */
5580 
5581  /* default to first core, override with -coreid */
5582  target->coreid = 0;
5583 
5584  target->working_area = 0x0;
5585  target->working_area_size = 0x0;
5586  target->working_areas = NULL;
5587  target->backup_working_area = 0;
5588 
5589  target->state = TARGET_UNKNOWN;
5591  target->reg_cache = NULL;
5592  target->breakpoints = NULL;
5593  target->watchpoints = NULL;
5594  target->next = NULL;
5595  target->arch_info = NULL;
5596 
5597  target->verbose_halt_msg = true;
5598 
5599  target->halt_issued = false;
5600 
5601  /* initialize trace information */
5602  target->trace_info = calloc(1, sizeof(struct trace));
5603 
5604  target->dbgmsg = NULL;
5605  target->dbg_msg_enabled = 0;
5606 
5608 
5609  target->rtos = NULL;
5610  target->rtos_auto_detect = false;
5611 
5612  /* Do the rest as "configure" options */
5613  goi->isconfigure = 1;
5614  e = target_configure(goi, target);
5615 
5616  if (e == JIM_OK) {
5617  if (target->has_dap) {
5618  if (!target->dap_configured) {
5619  Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5620  e = JIM_ERR;
5621  }
5622  } else {
5623  if (!target->tap_configured) {
5624  Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5625  e = JIM_ERR;
5626  }
5627  }
5628  /* tap must be set after target was configured */
5629  if (target->tap == NULL)
5630  e = JIM_ERR;
5631  }
5632 
5633  if (e != JIM_OK) {
5634  free(target->type);
5635  free(target);
5636  return e;
5637  }
5638 
5639  if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5640  /* default endian to little if not specified */
5641  target->endianness = TARGET_LITTLE_ENDIAN;
5642  }
5643 
5644  cp = Jim_GetString(new_cmd, NULL);
5645  target->cmd_name = strdup(cp);
5646 
5647  if (target->type->target_create) {
5648  e = (*(target->type->target_create))(target, goi->interp);
5649  if (e != ERROR_OK) {
5650  LOG_DEBUG("target_create failed");
5651  free(target->type);
5652  free(target->cmd_name);
5653  free(target);
5654  return JIM_ERR;
5655  }
5656  }
5657 
5658  /* create the target specific commands */
5659  if (target->type->commands) {
5660  e = register_commands(cmd_ctx, NULL, target->type->commands);
5661  if (ERROR_OK != e)
5662  LOG_ERROR("unable to register '%s' commands", cp);
5663  }
5664 
5665  /* append to end of list */
5666  {
5667  struct target **tpp;
5668  tpp = &(all_targets);
5669  while (*tpp)
5670  tpp = &((*tpp)->next);
5671  *tpp = target;
5672  }
5673 
5674  /* now - create the new target name command */
5675  const struct command_registration target_subcommands[] = {
5676  {
5678  },
5679  {
5680  .chain = target->type->commands,
5681  },
5683  };
5684  const struct command_registration target_commands[] = {
5685  {
5686  .name = cp,
5687  .mode = COMMAND_ANY,
5688  .help = "target command group",
5689  .usage = "",
5690  .chain = target_subcommands,
5691  },
5693  };
5694  e = register_commands(cmd_ctx, NULL, target_commands);
5695  if (ERROR_OK != e)
5696  return JIM_ERR;
5697 
5698  struct command *c = command_find_in_context(cmd_ctx, cp);
5699  assert(c);
5700  command_set_handler_data(c, target);
5701 
5702  return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5703 }
5704 
5705 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5706 {
5707  if (argc != 1) {
5708  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5709  return JIM_ERR;
5710  }
5711  struct command_context *cmd_ctx = current_command_context(interp);
5712  assert(cmd_ctx != NULL);
5713 
5714  Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5715  return JIM_OK;
5716 }
5717 
5718 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5719 {
5720  if (argc != 1) {
5721  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5722  return JIM_ERR;
5723  }
5724  Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5725  for (unsigned x = 0; NULL != target_types[x]; x++) {
5726  Jim_ListAppendElement(interp, Jim_GetResult(interp),
5727  Jim_NewStringObj(interp, target_types[x]->name, -1));
5728  }
5729  return JIM_OK;
5730 }
5731 
5732 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5733 {
5734  if (argc != 1) {
5735  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5736  return JIM_ERR;
5737  }
5738  Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5739  struct target *target = all_targets;
5740  while (target) {
5741  Jim_ListAppendElement(interp, Jim_GetResult(interp),
5742  Jim_NewStringObj(interp, target_name(target), -1));
5743  target = target->next;
5744  }
5745  return JIM_OK;
5746 }
5747 
5748 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5749 {
5750  int i;
5751  const char *targetname;
5752  int retval, len;
5753  struct target *target = (struct target *) NULL;
5754  struct target_list *head, *curr, *new;
5755  curr = (struct target_list *) NULL;
5756  head = (struct target_list *) NULL;
5757 
5758  retval = 0;
5759  LOG_DEBUG("%d", argc);
5760  /* argv[1] = target to associate in smp
5761  * argv[2] = target to assoicate in smp
5762  * argv[3] ...
5763  */
5764 
5765  for (i = 1; i < argc; i++) {
5766 
5767  targetname = Jim_GetString(argv[i], &len);
5768  target = get_target(targetname);
5769  LOG_DEBUG("%s ", targetname);
5770  if (target) {
5771  new = malloc(sizeof(struct target_list));
5772  new->target = target;
5773  new->next = (struct target_list *)NULL;
5774  if (head == (struct target_list *)NULL) {
5775  head = new;
5776  curr = head;
5777  } else {
5778  curr->next = new;
5779  curr = new;