OpenOCD
target/target.c
Go to the documentation of this file.
1 /***************************************************************************
2  * Copyright (C) 2005 by Dominic Rath *
3  * Dominic.Rath@gmx.de *
4  * *
5  * Copyright (C) 2007-2010 Øyvind Harboe *
6  * oyvind.harboe@zylin.com *
7  * *
8  * Copyright (C) 2008, Duane Ellis *
9  * openocd@duaneeellis.com *
10  * *
11  * Copyright (C) 2008 by Spencer Oliver *
12  * spen@spen-soft.co.uk *
13  * *
14  * Copyright (C) 2008 by Rick Altherr *
15  * kc8apf@kc8apf.net> *
16  * *
17  * Copyright (C) 2011 by Broadcom Corporation *
18  * Evan Hunter - ehunter@broadcom.com *
19  * *
20  * Copyright (C) ST-Ericsson SA 2011 *
21  * michel.jaouen@stericsson.com : smp minimum support *
22  * *
23  * Copyright (C) 2011 Andreas Fritiofson *
24  * andreas.fritiofson@gmail.com *
25  * *
26  * This program is free software; you can redistribute it and/or modify *
27  * it under the terms of the GNU General Public License as published by *
28  * the Free Software Foundation; either version 2 of the License, or *
29  * (at your option) any later version. *
30  * *
31  * This program is distributed in the hope that it will be useful, *
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34  * GNU General Public License for more details. *
35  * *
36  * You should have received a copy of the GNU General Public License *
37  * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39 
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43 
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47 
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58 
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61 
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63  uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65  uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67  int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69  int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
72  struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74  int fileio_errno, bool ctrl_c);
75 
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm_target;
89 extern struct target_type cortexa_target;
90 extern struct target_type aarch64_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type mips_mips64_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109 extern struct target_type riscv_target;
110 extern struct target_type mem_ap_target;
111 extern struct target_type esirisc_target;
112 extern struct target_type arcv2_target;
113 
114 static struct target_type *target_types[] = {
122  &fa526_target,
125  &xscale_target,
129  &arm11_target,
132  &avr_target,
135  &testee_target,
137  &hla_target,
141  &or1k_target,
144  &stm8_target,
145  &riscv_target,
146  &mem_ap_target,
148  &arcv2_target,
151  NULL,
152 };
153 
157 static LIST_HEAD(target_reset_callback_list);
158 static LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160 
161 static const Jim_Nvp nvp_assert[] = {
162  { .name = "assert", NVP_ASSERT },
163  { .name = "deassert", NVP_DEASSERT },
164  { .name = "T", NVP_ASSERT },
165  { .name = "F", NVP_DEASSERT },
166  { .name = "t", NVP_ASSERT },
167  { .name = "f", NVP_DEASSERT },
168  { .name = NULL, .value = -1 }
169 };
170 
171 static const Jim_Nvp nvp_error_target[] = {
172  { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173  { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174  { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175  { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176  { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177  { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
178  { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
179  { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
180  { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
181  { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182  { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183  { .value = -1, .name = NULL }
184 };
185 
186 static const char *target_strerror_safe(int err)
187 {
188  const Jim_Nvp *n;
189 
190  n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191  if (n->name == NULL)
192  return "unknown";
193  else
194  return n->name;
195 }
196 
197 static const Jim_Nvp nvp_target_event[] = {
198 
199  { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200  { .value = TARGET_EVENT_HALTED, .name = "halted" },
201  { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202  { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203  { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204  { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
205  { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
206 
207  { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
208  { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
209 
210  { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
211  { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
212  { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
213  { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
214  { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
215  { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
216  { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
217  { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
218 
219  { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
220  { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
221  { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
222 
223  { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
224  { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
225 
226  { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
227  { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
228 
229  { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
230  { .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
231 
232  { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
233  { .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
234 
235  { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
236 
237  { .name = NULL, .value = -1 }
238 };
239 
240 static const Jim_Nvp nvp_target_state[] = {
241  { .name = "unknown", .value = TARGET_UNKNOWN },
242  { .name = "running", .value = TARGET_RUNNING },
243  { .name = "halted", .value = TARGET_HALTED },
244  { .name = "reset", .value = TARGET_RESET },
245  { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
246  { .name = NULL, .value = -1 },
247 };
248 
250  { .name = "debug-request", .value = DBG_REASON_DBGRQ },
251  { .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
252  { .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
253  { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
254  { .name = "single-step", .value = DBG_REASON_SINGLESTEP },
255  { .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
256  { .name = "program-exit", .value = DBG_REASON_EXIT },
257  { .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
258  { .name = "undefined", .value = DBG_REASON_UNDEFINED },
259  { .name = NULL, .value = -1 },
260 };
261 
262 static const Jim_Nvp nvp_target_endian[] = {
263  { .name = "big", .value = TARGET_BIG_ENDIAN },
264  { .name = "little", .value = TARGET_LITTLE_ENDIAN },
265  { .name = "be", .value = TARGET_BIG_ENDIAN },
266  { .name = "le", .value = TARGET_LITTLE_ENDIAN },
267  { .name = NULL, .value = -1 },
268 };
269 
270 static const Jim_Nvp nvp_reset_modes[] = {
271  { .name = "unknown", .value = RESET_UNKNOWN },
272  { .name = "run", .value = RESET_RUN },
273  { .name = "halt", .value = RESET_HALT },
274  { .name = "init", .value = RESET_INIT },
275  { .name = NULL, .value = -1 },
276 };
277 
278 const char *debug_reason_name(struct target *t)
279 {
280  const char *cp;
281 
282  cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
283  t->debug_reason)->name;
284  if (!cp) {
285  LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
286  cp = "(*BUG*unknown*BUG*)";
287  }
288  return cp;
289 }
290 
291 const char *target_state_name(struct target *t)
292 {
293  const char *cp;
294  cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
295  if (!cp) {
296  LOG_ERROR("Invalid target state: %d", (int)(t->state));
297  cp = "(*BUG*unknown*BUG*)";
298  }
299 
300  if (!target_was_examined(t) && t->defer_examine)
301  cp = "examine deferred";
302 
303  return cp;
304 }
305 
306 const char *target_event_name(enum target_event event)
307 {
308  const char *cp;
309  cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
310  if (!cp) {
311  LOG_ERROR("Invalid target event: %d", (int)(event));
312  cp = "(*BUG*unknown*BUG*)";
313  }
314  return cp;
315 }
316 
317 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
318 {
319  const char *cp;
320  cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
321  if (!cp) {
322  LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
323  cp = "(*BUG*unknown*BUG*)";
324  }
325  return cp;
326 }
327 
328 /* determine the number of the new target */
329 static int new_target_number(void)
330 {
331  struct target *t;
332  int x;
333 
334  /* number is 0 based */
335  x = -1;
336  t = all_targets;
337  while (t) {
338  if (x < t->target_number)
339  x = t->target_number;
340  t = t->next;
341  }
342  return x + 1;
343 }
344 
346 {
347  struct target **t = &all_targets;
348 
349  while (*t)
350  t = &((*t)->next);
351  *t = target;
352 }
353 
354 /* read a uint64_t from a buffer in target memory endianness */
355 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
356 {
357  if (target->endianness == TARGET_LITTLE_ENDIAN)
358  return le_to_h_u64(buffer);
359  else
360  return be_to_h_u64(buffer);
361 }
362 
363 /* read a uint32_t from a buffer in target memory endianness */
364 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
365 {
366  if (target->endianness == TARGET_LITTLE_ENDIAN)
367  return le_to_h_u32(buffer);
368  else
369  return be_to_h_u32(buffer);
370 }
371 
372 /* read a uint24_t from a buffer in target memory endianness */
373 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
374 {
375  if (target->endianness == TARGET_LITTLE_ENDIAN)
376  return le_to_h_u24(buffer);
377  else
378  return be_to_h_u24(buffer);
379 }
380 
381 /* read a uint16_t from a buffer in target memory endianness */
382 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
383 {
384  if (target->endianness == TARGET_LITTLE_ENDIAN)
385  return le_to_h_u16(buffer);
386  else
387  return be_to_h_u16(buffer);
388 }
389 
390 /* write a uint64_t to a buffer in target memory endianness */
391 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
392 {
393  if (target->endianness == TARGET_LITTLE_ENDIAN)
394  h_u64_to_le(buffer, value);
395  else
396  h_u64_to_be(buffer, value);
397 }
398 
399 /* write a uint32_t to a buffer in target memory endianness */
400 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402  if (target->endianness == TARGET_LITTLE_ENDIAN)
403  h_u32_to_le(buffer, value);
404  else
405  h_u32_to_be(buffer, value);
406 }
407 
408 /* write a uint24_t to a buffer in target memory endianness */
409 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
410 {
411  if (target->endianness == TARGET_LITTLE_ENDIAN)
412  h_u24_to_le(buffer, value);
413  else
414  h_u24_to_be(buffer, value);
415 }
416 
417 /* write a uint16_t to a buffer in target memory endianness */
418 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
419 {
420  if (target->endianness == TARGET_LITTLE_ENDIAN)
421  h_u16_to_le(buffer, value);
422  else
423  h_u16_to_be(buffer, value);
424 }
425 
426 /* write a uint8_t to a buffer in target memory endianness */
427 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
428 {
429  *buffer = value;
430 }
431 
432 /* write a uint64_t array to a buffer in target memory endianness */
433 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
434 {
435  uint32_t i;
436  for (i = 0; i < count; i++)
437  dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
438 }
439 
440 /* write a uint32_t array to a buffer in target memory endianness */
441 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
442 {
443  uint32_t i;
444  for (i = 0; i < count; i++)
445  dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
446 }
447 
448 /* write a uint16_t array to a buffer in target memory endianness */
449 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
450 {
451  uint32_t i;
452  for (i = 0; i < count; i++)
453  dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
454 }
455 
456 /* write a uint64_t array to a buffer in target memory endianness */
457 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
458 {
459  uint32_t i;
460  for (i = 0; i < count; i++)
461  target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
462 }
463 
464 /* write a uint32_t array to a buffer in target memory endianness */
465 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
466 {
467  uint32_t i;
468  for (i = 0; i < count; i++)
469  target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
470 }
471 
472 /* write a uint16_t array to a buffer in target memory endianness */
473 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
474 {
475  uint32_t i;
476  for (i = 0; i < count; i++)
477  target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
478 }
479 
480 /* return a pointer to a configured target; id is name or number */
481 struct target *get_target(const char *id)
482 {
483  struct target *target;
484 
485  /* try as tcltarget name */
486  for (target = all_targets; target; target = target->next) {
487  if (target_name(target) == NULL)
488  continue;
489  if (strcmp(id, target_name(target)) == 0)
490  return target;
491  }
492 
493  /* It's OK to remove this fallback sometime after August 2010 or so */
494 
495  /* no match, try as number */
496  unsigned num;
497  if (parse_uint(id, &num) != ERROR_OK)
498  return NULL;
499 
500  for (target = all_targets; target; target = target->next) {
501  if (target->target_number == (int)num) {
502  LOG_WARNING("use '%s' as target identifier, not '%u'",
503  target_name(target), num);
504  return target;
505  }
506  }
507 
508  return NULL;
509 }
510 
511 /* returns a pointer to the n-th configured target */
512 struct target *get_target_by_num(int num)
513 {
514  struct target *target = all_targets;
515 
516  while (target) {
517  if (target->target_number == num)
518  return target;
519  target = target->next;
520  }
521 
522  return NULL;
523 }
524 
525 struct target *get_current_target(struct command_context *cmd_ctx)
526 {
527  struct target *target = get_current_target_or_null(cmd_ctx);
528 
529  if (target == NULL) {
530  LOG_ERROR("BUG: current_target out of bounds");
531  exit(-1);
532  }
533 
534  return target;
535 }
536 
538 {
539  return cmd_ctx->current_target_override
540  ? cmd_ctx->current_target_override
541  : cmd_ctx->current_target;
542 }
543 
545 {
546  int retval;
547 
548  /* We can't poll until after examine */
549  if (!target_was_examined(target)) {
550  /* Fail silently lest we pollute the log */
551  return ERROR_FAIL;
552  }
553 
554  retval = target->type->poll(target);
555  if (retval != ERROR_OK)
556  return retval;
557 
558  if (target->halt_issued) {
559  if (target->state == TARGET_HALTED)
560  target->halt_issued = false;
561  else {
562  int64_t t = timeval_ms() - target->halt_issued_time;
563  if (t > DEFAULT_HALT_TIMEOUT) {
564  target->halt_issued = false;
565  LOG_INFO("Halt timed out, wake up GDB.");
567  }
568  }
569  }
570 
571  return ERROR_OK;
572 }
573 
575 {
576  int retval;
577  /* We can't poll until after examine */
578  if (!target_was_examined(target)) {
579  LOG_ERROR("Target not examined yet");
580  return ERROR_FAIL;
581  }
582 
583  retval = target->type->halt(target);
584  if (retval != ERROR_OK)
585  return retval;
586 
587  target->halt_issued = true;
588  target->halt_issued_time = timeval_ms();
589 
590  return ERROR_OK;
591 }
592 
623 int target_resume(struct target *target, int current, target_addr_t address,
624  int handle_breakpoints, int debug_execution)
625 {
626  int retval;
627 
628  /* We can't poll until after examine */
629  if (!target_was_examined(target)) {
630  LOG_ERROR("Target not examined yet");
631  return ERROR_FAIL;
632  }
633 
635 
636  /* note that resume *must* be asynchronous. The CPU can halt before
637  * we poll. The CPU can even halt at the current PC as a result of
638  * a software breakpoint being inserted by (a bug?) the application.
639  */
640  retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
641  if (retval != ERROR_OK)
642  return retval;
643 
645 
646  return retval;
647 }
648 
649 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
650 {
651  char buf[100];
652  int retval;
653  Jim_Nvp *n;
654  n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
655  if (n->name == NULL) {
656  LOG_ERROR("invalid reset mode");
657  return ERROR_FAIL;
658  }
659 
660  struct target *target;
661  for (target = all_targets; target; target = target->next)
662  target_call_reset_callbacks(target, reset_mode);
663 
664  /* disable polling during reset to make reset event scripts
665  * more predictable, i.e. dr/irscan & pathmove in events will
666  * not have JTAG operations injected into the middle of a sequence.
667  */
668  bool save_poll = jtag_poll_get_enabled();
669 
670  jtag_poll_set_enabled(false);
671 
672  sprintf(buf, "ocd_process_reset %s", n->name);
673  retval = Jim_Eval(cmd->ctx->interp, buf);
674 
675  jtag_poll_set_enabled(save_poll);
676 
677  if (retval != JIM_OK) {
678  Jim_MakeErrorMessage(cmd->ctx->interp);
679  command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
680  return ERROR_FAIL;
681  }
682 
683  /* We want any events to be processed before the prompt */
685 
686  for (target = all_targets; target; target = target->next) {
687  target->type->check_reset(target);
688  target->running_alg = false;
689  }
690 
691  return retval;
692 }
693 
694 static int identity_virt2phys(struct target *target,
695  target_addr_t virtual, target_addr_t *physical)
696 {
697  *physical = virtual;
698  return ERROR_OK;
699 }
700 
701 static int no_mmu(struct target *target, int *enabled)
702 {
703  *enabled = 0;
704  return ERROR_OK;
705 }
706 
707 static int default_examine(struct target *target)
708 {
709  target_set_examined(target);
710  return ERROR_OK;
711 }
712 
713 /* no check by default */
714 static int default_check_reset(struct target *target)
715 {
716  return ERROR_OK;
717 }
718 
719 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
720  * Keep in sync */
722 {
724 
725  int retval = target->type->examine(target);
726  if (retval != ERROR_OK) {
728  return retval;
729  }
730 
732 
733  return ERROR_OK;
734 }
735 
736 static int jtag_enable_callback(enum jtag_event event, void *priv)
737 {
738  struct target *target = priv;
739 
740  if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
741  return ERROR_OK;
742 
744 
745  return target_examine_one(target);
746 }
747 
748 /* Targets that correctly implement init + examine, i.e.
749  * no communication with target during init:
750  *
751  * XScale
752  */
753 int target_examine(void)
754 {
755  int retval = ERROR_OK;
756  struct target *target;
757 
758  for (target = all_targets; target; target = target->next) {
759  /* defer examination, but don't skip it */
760  if (!target->tap->enabled) {
762  target);
763  continue;
764  }
765 
766  if (target->defer_examine)
767  continue;
768 
769  int retval2 = target_examine_one(target);
770  if (retval2 != ERROR_OK) {
771  LOG_WARNING("target %s examination failed", target_name(target));
772  retval = retval2;
773  }
774  }
775  return retval;
776 }
777 
778 const char *target_type_name(struct target *target)
779 {
780  return target->type->name;
781 }
782 
784 {
785  if (!target_was_examined(target)) {
786  LOG_ERROR("Target not examined yet");
787  return ERROR_FAIL;
788  }
789  if (!target->type->soft_reset_halt) {
790  LOG_ERROR("Target %s does not support soft_reset_halt",
791  target_name(target));
792  return ERROR_FAIL;
793  }
794  return target->type->soft_reset_halt(target);
795 }
796 
809  int num_mem_params, struct mem_param *mem_params,
810  int num_reg_params, struct reg_param *reg_param,
811  uint32_t entry_point, uint32_t exit_point,
812  int timeout_ms, void *arch_info)
813 {
814  int retval = ERROR_FAIL;
815 
816  if (!target_was_examined(target)) {
817  LOG_ERROR("Target not examined yet");
818  goto done;
819  }
820  if (!target->type->run_algorithm) {
821  LOG_ERROR("Target type '%s' does not support %s",
822  target_type_name(target), __func__);
823  goto done;
824  }
825 
826  target->running_alg = true;
827  retval = target->type->run_algorithm(target,
828  num_mem_params, mem_params,
829  num_reg_params, reg_param,
830  entry_point, exit_point, timeout_ms, arch_info);
831  target->running_alg = false;
832 
833 done:
834  return retval;
835 }
836 
844  int num_mem_params, struct mem_param *mem_params,
845  int num_reg_params, struct reg_param *reg_params,
846  uint32_t entry_point, uint32_t exit_point,
847  void *arch_info)
848 {
849  int retval = ERROR_FAIL;
850 
851  if (!target_was_examined(target)) {
852  LOG_ERROR("Target not examined yet");
853  goto done;
854  }
855  if (!target->type->start_algorithm) {
856  LOG_ERROR("Target type '%s' does not support %s",
857  target_type_name(target), __func__);
858  goto done;
859  }
860  if (target->running_alg) {
861  LOG_ERROR("Target is already running an algorithm");
862  goto done;
863  }
864 
865  target->running_alg = true;
866  retval = target->type->start_algorithm(target,
867  num_mem_params, mem_params,
868  num_reg_params, reg_params,
869  entry_point, exit_point, arch_info);
870 
871 done:
872  return retval;
873 }
874 
882  int num_mem_params, struct mem_param *mem_params,
883  int num_reg_params, struct reg_param *reg_params,
884  uint32_t exit_point, int timeout_ms,
885  void *arch_info)
886 {
887  int retval = ERROR_FAIL;
888 
889  if (!target->type->wait_algorithm) {
890  LOG_ERROR("Target type '%s' does not support %s",
891  target_type_name(target), __func__);
892  goto done;
893  }
894  if (!target->running_alg) {
895  LOG_ERROR("Target is not running an algorithm");
896  goto done;
897  }
898 
899  retval = target->type->wait_algorithm(target,
900  num_mem_params, mem_params,
901  num_reg_params, reg_params,
902  exit_point, timeout_ms, arch_info);
903  if (retval != ERROR_TARGET_TIMEOUT)
904  target->running_alg = false;
905 
906 done:
907  return retval;
908 }
909 
953  const uint8_t *buffer, uint32_t count, int block_size,
954  int num_mem_params, struct mem_param *mem_params,
955  int num_reg_params, struct reg_param *reg_params,
956  uint32_t buffer_start, uint32_t buffer_size,
957  uint32_t entry_point, uint32_t exit_point, void *arch_info)
958 {
959  int retval;
960  int timeout = 0;
961 
962  const uint8_t *buffer_orig = buffer;
963 
964  /* Set up working area. First word is write pointer, second word is read pointer,
965  * rest is fifo data area. */
966  uint32_t wp_addr = buffer_start;
967  uint32_t rp_addr = buffer_start + 4;
968  uint32_t fifo_start_addr = buffer_start + 8;
969  uint32_t fifo_end_addr = buffer_start + buffer_size;
970 
971  uint32_t wp = fifo_start_addr;
972  uint32_t rp = fifo_start_addr;
973 
974  /* validate block_size is 2^n */
975  assert(!block_size || !(block_size & (block_size - 1)));
976 
977  retval = target_write_u32(target, wp_addr, wp);
978  if (retval != ERROR_OK)
979  return retval;
980  retval = target_write_u32(target, rp_addr, rp);
981  if (retval != ERROR_OK)
982  return retval;
983 
984  /* Start up algorithm on target and let it idle while writing the first chunk */
985  retval = target_start_algorithm(target, num_mem_params, mem_params,
986  num_reg_params, reg_params,
987  entry_point,
988  exit_point,
989  arch_info);
990 
991  if (retval != ERROR_OK) {
992  LOG_ERROR("error starting target flash write algorithm");
993  return retval;
994  }
995 
996  while (count > 0) {
997 
998  retval = target_read_u32(target, rp_addr, &rp);
999  if (retval != ERROR_OK) {
1000  LOG_ERROR("failed to get read pointer");
1001  break;
1002  }
1003 
1004  LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1005  (size_t) (buffer - buffer_orig), count, wp, rp);
1006 
1007  if (rp == 0) {
1008  LOG_ERROR("flash write algorithm aborted by target");
1010  break;
1011  }
1012 
1013  if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1014  LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1015  break;
1016  }
1017 
1018  /* Count the number of bytes available in the fifo without
1019  * crossing the wrap around. Make sure to not fill it completely,
1020  * because that would make wp == rp and that's the empty condition. */
1021  uint32_t thisrun_bytes;
1022  if (rp > wp)
1023  thisrun_bytes = rp - wp - block_size;
1024  else if (rp > fifo_start_addr)
1025  thisrun_bytes = fifo_end_addr - wp;
1026  else
1027  thisrun_bytes = fifo_end_addr - wp - block_size;
1028 
1029  if (thisrun_bytes == 0) {
1030  /* Throttle polling a bit if transfer is (much) faster than flash
1031  * programming. The exact delay shouldn't matter as long as it's
1032  * less than buffer size / flash speed. This is very unlikely to
1033  * run when using high latency connections such as USB. */
1034  alive_sleep(2);
1035 
1036  /* to stop an infinite loop on some targets check and increment a timeout
1037  * this issue was observed on a stellaris using the new ICDI interface */
1038  if (timeout++ >= 2500) {
1039  LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1041  }
1042  continue;
1043  }
1044 
1045  /* reset our timeout */
1046  timeout = 0;
1047 
1048  /* Limit to the amount of data we actually want to write */
1049  if (thisrun_bytes > count * block_size)
1050  thisrun_bytes = count * block_size;
1051 
1052  /* Force end of large blocks to be word aligned */
1053  if (thisrun_bytes >= 16)
1054  thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1055 
1056  /* Write data to fifo */
1057  retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1058  if (retval != ERROR_OK)
1059  break;
1060 
1061  /* Update counters and wrap write pointer */
1062  buffer += thisrun_bytes;
1063  count -= thisrun_bytes / block_size;
1064  wp += thisrun_bytes;
1065  if (wp >= fifo_end_addr)
1066  wp = fifo_start_addr;
1067 
1068  /* Store updated write pointer to target */
1069  retval = target_write_u32(target, wp_addr, wp);
1070  if (retval != ERROR_OK)
1071  break;
1072 
1073  /* Avoid GDB timeouts */
1074  keep_alive();
1075  }
1076 
1077  if (retval != ERROR_OK) {
1078  /* abort flash write algorithm on target */
1079  target_write_u32(target, wp_addr, 0);
1080  }
1081 
1082  int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1083  num_reg_params, reg_params,
1084  exit_point,
1085  10000,
1086  arch_info);
1087 
1088  if (retval2 != ERROR_OK) {
1089  LOG_ERROR("error waiting for target flash write algorithm");
1090  retval = retval2;
1091  }
1092 
1093  if (retval == ERROR_OK) {
1094  /* check if algorithm set rp = 0 after fifo writer loop finished */
1095  retval = target_read_u32(target, rp_addr, &rp);
1096  if (retval == ERROR_OK && rp == 0) {
1097  LOG_ERROR("flash write algorithm aborted by target");
1099  }
1100  }
1101 
1102  return retval;
1103 }
1104 
1106  uint8_t *buffer, uint32_t count, int block_size,
1107  int num_mem_params, struct mem_param *mem_params,
1108  int num_reg_params, struct reg_param *reg_params,
1109  uint32_t buffer_start, uint32_t buffer_size,
1110  uint32_t entry_point, uint32_t exit_point, void *arch_info)
1111 {
1112  int retval;
1113  int timeout = 0;
1114 
1115  const uint8_t *buffer_orig = buffer;
1116 
1117  /* Set up working area. First word is write pointer, second word is read pointer,
1118  * rest is fifo data area. */
1119  uint32_t wp_addr = buffer_start;
1120  uint32_t rp_addr = buffer_start + 4;
1121  uint32_t fifo_start_addr = buffer_start + 8;
1122  uint32_t fifo_end_addr = buffer_start + buffer_size;
1123 
1124  uint32_t wp = fifo_start_addr;
1125  uint32_t rp = fifo_start_addr;
1126 
1127  /* validate block_size is 2^n */
1128  assert(!block_size || !(block_size & (block_size - 1)));
1129 
1130  retval = target_write_u32(target, wp_addr, wp);
1131  if (retval != ERROR_OK)
1132  return retval;
1133  retval = target_write_u32(target, rp_addr, rp);
1134  if (retval != ERROR_OK)
1135  return retval;
1136 
1137  /* Start up algorithm on target */
1138  retval = target_start_algorithm(target, num_mem_params, mem_params,
1139  num_reg_params, reg_params,
1140  entry_point,
1141  exit_point,
1142  arch_info);
1143 
1144  if (retval != ERROR_OK) {
1145  LOG_ERROR("error starting target flash read algorithm");
1146  return retval;
1147  }
1148 
1149  while (count > 0) {
1150  retval = target_read_u32(target, wp_addr, &wp);
1151  if (retval != ERROR_OK) {
1152  LOG_ERROR("failed to get write pointer");
1153  break;
1154  }
1155 
1156  LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1157  (size_t)(buffer - buffer_orig), count, wp, rp);
1158 
1159  if (wp == 0) {
1160  LOG_ERROR("flash read algorithm aborted by target");
1162  break;
1163  }
1164 
1165  if (((wp - fifo_start_addr) & (block_size - 1)) || wp < fifo_start_addr || wp >= fifo_end_addr) {
1166  LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
1167  break;
1168  }
1169 
1170  /* Count the number of bytes available in the fifo without
1171  * crossing the wrap around. */
1172  uint32_t thisrun_bytes;
1173  if (wp >= rp)
1174  thisrun_bytes = wp - rp;
1175  else
1176  thisrun_bytes = fifo_end_addr - rp;
1177 
1178  if (thisrun_bytes == 0) {
1179  /* Throttle polling a bit if transfer is (much) faster than flash
1180  * reading. The exact delay shouldn't matter as long as it's
1181  * less than buffer size / flash speed. This is very unlikely to
1182  * run when using high latency connections such as USB. */
1183  alive_sleep(2);
1184 
1185  /* to stop an infinite loop on some targets check and increment a timeout
1186  * this issue was observed on a stellaris using the new ICDI interface */
1187  if (timeout++ >= 2500) {
1188  LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1190  }
1191  continue;
1192  }
1193 
1194  /* Reset our timeout */
1195  timeout = 0;
1196 
1197  /* Limit to the amount of data we actually want to read */
1198  if (thisrun_bytes > count * block_size)
1199  thisrun_bytes = count * block_size;
1200 
1201  /* Force end of large blocks to be word aligned */
1202  if (thisrun_bytes >= 16)
1203  thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1204 
1205  /* Read data from fifo */
1206  retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
1207  if (retval != ERROR_OK)
1208  break;
1209 
1210  /* Update counters and wrap write pointer */
1211  buffer += thisrun_bytes;
1212  count -= thisrun_bytes / block_size;
1213  rp += thisrun_bytes;
1214  if (rp >= fifo_end_addr)
1215  rp = fifo_start_addr;
1216 
1217  /* Store updated write pointer to target */
1218  retval = target_write_u32(target, rp_addr, rp);
1219  if (retval != ERROR_OK)
1220  break;
1221 
1222  /* Avoid GDB timeouts */
1223  keep_alive();
1224 
1225  }
1226 
1227  if (retval != ERROR_OK) {
1228  /* abort flash write algorithm on target */
1229  target_write_u32(target, rp_addr, 0);
1230  }
1231 
1232  int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1233  num_reg_params, reg_params,
1234  exit_point,
1235  10000,
1236  arch_info);
1237 
1238  if (retval2 != ERROR_OK) {
1239  LOG_ERROR("error waiting for target flash write algorithm");
1240  retval = retval2;
1241  }
1242 
1243  if (retval == ERROR_OK) {
1244  /* check if algorithm set wp = 0 after fifo writer loop finished */
1245  retval = target_read_u32(target, wp_addr, &wp);
1246  if (retval == ERROR_OK && wp == 0) {
1247  LOG_ERROR("flash read algorithm aborted by target");
1249  }
1250  }
1251 
1252  return retval;
1253 }
1254 
1256  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1257 {
1258  if (!target_was_examined(target)) {
1259  LOG_ERROR("Target not examined yet");
1260  return ERROR_FAIL;
1261  }
1262  if (!target->type->read_memory) {
1263  LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1264  return ERROR_FAIL;
1265  }
1266  return target->type->read_memory(target, address, size, count, buffer);
1267 }
1268 
1270  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1271 {
1272  if (!target_was_examined(target)) {
1273  LOG_ERROR("Target not examined yet");
1274  return ERROR_FAIL;
1275  }
1276  if (!target->type->read_phys_memory) {
1277  LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1278  return ERROR_FAIL;
1279  }
1280  return target->type->read_phys_memory(target, address, size, count, buffer);
1281 }
1282 
1284  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1285 {
1286  if (!target_was_examined(target)) {
1287  LOG_ERROR("Target not examined yet");
1288  return ERROR_FAIL;
1289  }
1290  if (!target->type->write_memory) {
1291  LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1292  return ERROR_FAIL;
1293  }
1294  return target->type->write_memory(target, address, size, count, buffer);
1295 }
1296 
1298  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1299 {
1300  if (!target_was_examined(target)) {
1301  LOG_ERROR("Target not examined yet");
1302  return ERROR_FAIL;
1303  }
1304  if (!target->type->write_phys_memory) {
1305  LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1306  return ERROR_FAIL;
1307  }
1308  return target->type->write_phys_memory(target, address, size, count, buffer);
1309 }
1310 
1312  struct breakpoint *breakpoint)
1313 {
1314  if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1315  LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1316  return ERROR_TARGET_NOT_HALTED;
1317  }
1318  return target->type->add_breakpoint(target, breakpoint);
1319 }
1320 
1322  struct breakpoint *breakpoint)
1323 {
1324  if (target->state != TARGET_HALTED) {
1325  LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1326  return ERROR_TARGET_NOT_HALTED;
1327  }
1328  return target->type->add_context_breakpoint(target, breakpoint);
1329 }
1330 
1332  struct breakpoint *breakpoint)
1333 {
1334  if (target->state != TARGET_HALTED) {
1335  LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1336  return ERROR_TARGET_NOT_HALTED;
1337  }
1338  return target->type->add_hybrid_breakpoint(target, breakpoint);
1339 }
1340 
1342  struct breakpoint *breakpoint)
1343 {
1344  return target->type->remove_breakpoint(target, breakpoint);
1345 }
1346 
1348  struct watchpoint *watchpoint)
1349 {
1350  if (target->state != TARGET_HALTED) {
1351  LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1352  return ERROR_TARGET_NOT_HALTED;
1353  }
1354  return target->type->add_watchpoint(target, watchpoint);
1355 }
1357  struct watchpoint *watchpoint)
1358 {
1359  return target->type->remove_watchpoint(target, watchpoint);
1360 }
1362  struct watchpoint **hit_watchpoint)
1363 {
1364  if (target->state != TARGET_HALTED) {
1365  LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1366  return ERROR_TARGET_NOT_HALTED;
1367  }
1368 
1369  if (target->type->hit_watchpoint == NULL) {
1370  /* For backward compatible, if hit_watchpoint is not implemented,
1371  * return ERROR_FAIL such that gdb_server will not take the nonsense
1372  * information. */
1373  return ERROR_FAIL;
1374  }
1375 
1376  return target->type->hit_watchpoint(target, hit_watchpoint);
1377 }
1378 
1379 const char *target_get_gdb_arch(struct target *target)
1380 {
1381  if (target->type->get_gdb_arch == NULL)
1382  return NULL;
1383  return target->type->get_gdb_arch(target);
1384 }
1385 
1387  struct reg **reg_list[], int *reg_list_size,
1388  enum target_register_class reg_class)
1389 {
1390  int result = ERROR_FAIL;
1391 
1392  if (!target_was_examined(target)) {
1393  LOG_ERROR("Target not examined yet");
1394  goto done;
1395  }
1396 
1397  result = target->type->get_gdb_reg_list(target, reg_list,
1398  reg_list_size, reg_class);
1399 
1400 done:
1401  if (result != ERROR_OK) {
1402  *reg_list = NULL;
1403  *reg_list_size = 0;
1404  }
1405  return result;
1406 }
1407 
1409  struct reg **reg_list[], int *reg_list_size,
1410  enum target_register_class reg_class)
1411 {
1412  if (target->type->get_gdb_reg_list_noread &&
1413  target->type->get_gdb_reg_list_noread(target, reg_list,
1414  reg_list_size, reg_class) == ERROR_OK)
1415  return ERROR_OK;
1416  return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1417 }
1418 
1420 {
1421  /*
1422  * exclude all the targets that don't provide get_gdb_reg_list
1423  * or that have explicit gdb_max_connection == 0
1424  */
1425  return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
1426 }
1427 
1429  int current, target_addr_t address, int handle_breakpoints)
1430 {
1431  int retval;
1432 
1434 
1435  retval = target->type->step(target, current, address, handle_breakpoints);
1436  if (retval != ERROR_OK)
1437  return retval;
1438 
1440 
1441  return retval;
1442 }
1443 
1445 {
1446  if (target->state != TARGET_HALTED) {
1447  LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1448  return ERROR_TARGET_NOT_HALTED;
1449  }
1450  return target->type->get_gdb_fileio_info(target, fileio_info);
1451 }
1452 
1453 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1454 {
1455  if (target->state != TARGET_HALTED) {
1456  LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1457  return ERROR_TARGET_NOT_HALTED;
1458  }
1459  return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1460 }
1461 
1463 {
1464  unsigned bits = target_address_bits(target);
1465  if (sizeof(target_addr_t) * 8 == bits)
1466  return (target_addr_t) -1;
1467  else
1468  return (((target_addr_t) 1) << bits) - 1;
1469 }
1470 
1472 {
1473  if (target->type->address_bits)
1474  return target->type->address_bits(target);
1475  return 32;
1476 }
1477 
1478 static int target_profiling(struct target *target, uint32_t *samples,
1479  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1480 {
1481  return target->type->profiling(target, samples, max_num_samples,
1482  num_samples, seconds);
1483 }
1484 
1490 {
1491  target->examined = false;
1492 }
1493 
1494 static int handle_target(void *priv);
1495 
1496 static int target_init_one(struct command_context *cmd_ctx,
1497  struct target *target)
1498 {
1499  target_reset_examined(target);
1500 
1501  struct target_type *type = target->type;
1502  if (type->examine == NULL)
1503  type->examine = default_examine;
1504 
1505  if (type->check_reset == NULL)
1507 
1508  assert(type->init_target != NULL);
1509 
1510  int retval = type->init_target(cmd_ctx, target);
1511  if (ERROR_OK != retval) {
1512  LOG_ERROR("target '%s' init failed", target_name(target));
1513  return retval;
1514  }
1515 
1516  /* Sanity-check MMU support ... stub in what we must, to help
1517  * implement it in stages, but warn if we need to do so.
1518  */
1519  if (type->mmu) {
1520  if (type->virt2phys == NULL) {
1521  LOG_ERROR("type '%s' is missing virt2phys", type->name);
1522  type->virt2phys = identity_virt2phys;
1523  }
1524  } else {
1525  /* Make sure no-MMU targets all behave the same: make no
1526  * distinction between physical and virtual addresses, and
1527  * ensure that virt2phys() is always an identity mapping.
1528  */
1529  if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1530  LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1531 
1532  type->mmu = no_mmu;
1533  type->write_phys_memory = type->write_memory;
1534  type->read_phys_memory = type->read_memory;
1535  type->virt2phys = identity_virt2phys;
1536  }
1537 
1538  if (target->type->read_buffer == NULL)
1540 
1541  if (target->type->write_buffer == NULL)
1543 
1544  if (target->type->get_gdb_fileio_info == NULL)
1546 
1547  if (target->type->gdb_fileio_end == NULL)
1549 
1550  if (target->type->profiling == NULL)
1552 
1553  return ERROR_OK;
1554 }
1555 
1556 static int target_init(struct command_context *cmd_ctx)
1557 {
1558  struct target *target;
1559  int retval;
1560 
1561  for (target = all_targets; target; target = target->next) {
1562  retval = target_init_one(cmd_ctx, target);
1563  if (ERROR_OK != retval)
1564  return retval;
1565  }
1566 
1567  if (!all_targets)
1568  return ERROR_OK;
1569 
1570  retval = target_register_user_commands(cmd_ctx);
1571  if (ERROR_OK != retval)
1572  return retval;
1573 
1576  if (ERROR_OK != retval)
1577  return retval;
1578 
1579  return ERROR_OK;
1580 }
1581 
1582 COMMAND_HANDLER(handle_target_init_command)
1583 {
1584  int retval;
1585 
1586  if (CMD_ARGC != 0)
1588 
1589  static bool target_initialized;
1590  if (target_initialized) {
1591  LOG_INFO("'target init' has already been called");
1592  return ERROR_OK;
1593  }
1594  target_initialized = true;
1595 
1596  retval = command_run_line(CMD_CTX, "init_targets");
1597  if (ERROR_OK != retval)
1598  return retval;
1599 
1600  retval = command_run_line(CMD_CTX, "init_target_events");
1601  if (ERROR_OK != retval)
1602  return retval;
1603 
1604  retval = command_run_line(CMD_CTX, "init_board");
1605  if (ERROR_OK != retval)
1606  return retval;
1607 
1608  LOG_DEBUG("Initializing targets...");
1609  return target_init(CMD_CTX);
1610 }
1611 
1612 int target_register_event_callback(int (*callback)(struct target *target,
1613  enum target_event event, void *priv), void *priv)
1614 {
1615  struct target_event_callback **callbacks_p = &target_event_callbacks;
1616 
1617  if (callback == NULL)
1619 
1620  if (*callbacks_p) {
1621  while ((*callbacks_p)->next)
1622  callbacks_p = &((*callbacks_p)->next);
1623  callbacks_p = &((*callbacks_p)->next);
1624  }
1625 
1626  (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1627  (*callbacks_p)->callback = callback;
1628  (*callbacks_p)->priv = priv;
1629  (*callbacks_p)->next = NULL;
1630 
1631  return ERROR_OK;
1632 }
1633 
1635  enum target_reset_mode reset_mode, void *priv), void *priv)
1636 {
1637  struct target_reset_callback *entry;
1638 
1639  if (callback == NULL)
1641 
1642  entry = malloc(sizeof(struct target_reset_callback));
1643  if (entry == NULL) {
1644  LOG_ERROR("error allocating buffer for reset callback entry");
1646  }
1647 
1648  entry->callback = callback;
1649  entry->priv = priv;
1650  list_add(&entry->list, &target_reset_callback_list);
1651 
1652 
1653  return ERROR_OK;
1654 }
1655 
1657  size_t len, uint8_t *data, void *priv), void *priv)
1658 {
1659  struct target_trace_callback *entry;
1660 
1661  if (callback == NULL)
1663 
1664  entry = malloc(sizeof(struct target_trace_callback));
1665  if (entry == NULL) {
1666  LOG_ERROR("error allocating buffer for trace callback entry");
1668  }
1669 
1670  entry->callback = callback;
1671  entry->priv = priv;
1672  list_add(&entry->list, &target_trace_callback_list);
1673 
1674 
1675  return ERROR_OK;
1676 }
1677 
1679  unsigned int time_ms, enum target_timer_type type, void *priv)
1680 {
1681  struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1682 
1683  if (callback == NULL)
1685 
1686  if (*callbacks_p) {
1687  while ((*callbacks_p)->next)
1688  callbacks_p = &((*callbacks_p)->next);
1689  callbacks_p = &((*callbacks_p)->next);
1690  }
1691 
1692  (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1693  (*callbacks_p)->callback = callback;
1694  (*callbacks_p)->type = type;
1695  (*callbacks_p)->time_ms = time_ms;
1696  (*callbacks_p)->removed = false;
1697 
1698  gettimeofday(&(*callbacks_p)->when, NULL);
1699  timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1700 
1701  (*callbacks_p)->priv = priv;
1702  (*callbacks_p)->next = NULL;
1703 
1704  return ERROR_OK;
1705 }
1706 
1708  enum target_event event, void *priv), void *priv)
1709 {
1712 
1713  if (callback == NULL)
1715 
1716  while (c) {
1717  struct target_event_callback *next = c->next;
1718  if ((c->callback == callback) && (c->priv == priv)) {
1719  *p = next;
1720  free(c);
1721  return ERROR_OK;
1722  } else
1723  p = &(c->next);
1724  c = next;
1725  }
1726 
1727  return ERROR_OK;
1728 }
1729 
1731  enum target_reset_mode reset_mode, void *priv), void *priv)
1732 {
1733  struct target_reset_callback *entry;
1734 
1735  if (callback == NULL)
1737 
1738  list_for_each_entry(entry, &target_reset_callback_list, list) {
1739  if (entry->callback == callback && entry->priv == priv) {
1740  list_del(&entry->list);
1741  free(entry);
1742  break;
1743  }
1744  }
1745 
1746  return ERROR_OK;
1747 }
1748 
1750  size_t len, uint8_t *data, void *priv), void *priv)
1751 {
1752  struct target_trace_callback *entry;
1753 
1754  if (callback == NULL)
1756 
1757  list_for_each_entry(entry, &target_trace_callback_list, list) {
1758  if (entry->callback == callback && entry->priv == priv) {
1759  list_del(&entry->list);
1760  free(entry);
1761  break;
1762  }
1763  }
1764 
1765  return ERROR_OK;
1766 }
1767 
1768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1769 {
1770  if (callback == NULL)
1772 
1773  for (struct target_timer_callback *c = target_timer_callbacks;
1774  c; c = c->next) {
1775  if ((c->callback == callback) && (c->priv == priv)) {
1776  c->removed = true;
1777  return ERROR_OK;
1778  }
1779  }
1780 
1781  return ERROR_FAIL;
1782 }
1783 
1785 {
1787  struct target_event_callback *next_callback;
1788 
1789  if (event == TARGET_EVENT_HALTED) {
1790  /* execute early halted first */
1792  }
1793 
1794  LOG_DEBUG("target event %i (%s) for core %s", event,
1795  Jim_Nvp_value2name_simple(nvp_target_event, event)->name,
1796  target_name(target));
1797 
1798  target_handle_event(target, event);
1799 
1800  while (callback) {
1801  next_callback = callback->next;
1802  callback->callback(target, event, callback->priv);
1803  callback = next_callback;
1804  }
1805 
1806  return ERROR_OK;
1807 }
1808 
1810 {
1812 
1813  LOG_DEBUG("target reset %i (%s)", reset_mode,
1814  Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1815 
1816  list_for_each_entry(callback, &target_reset_callback_list, list)
1817  callback->callback(target, reset_mode, callback->priv);
1818 
1819  return ERROR_OK;
1820 }
1821 
1822 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1823 {
1825 
1826  list_for_each_entry(callback, &target_trace_callback_list, list)
1827  callback->callback(target, len, data, callback->priv);
1828 
1829  return ERROR_OK;
1830 }
1831 
1833  struct target_timer_callback *cb, struct timeval *now)
1834 {
1835  cb->when = *now;
1836  timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1837  return ERROR_OK;
1838 }
1839 
1841  struct timeval *now)
1842 {
1843  cb->callback(cb->priv);
1844 
1845  if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1847 
1849 }
1850 
1852 {
1853  static bool callback_processing;
1854 
1855  /* Do not allow nesting */
1856  if (callback_processing)
1857  return ERROR_OK;
1858 
1859  callback_processing = true;
1860 
1861  keep_alive();
1862 
1863  struct timeval now;
1864  gettimeofday(&now, NULL);
1865 
1866  /* Store an address of the place containing a pointer to the
1867  * next item; initially, that's a standalone "root of the
1868  * list" variable. */
1870  while (callback && *callback) {
1871  if ((*callback)->removed) {
1872  struct target_timer_callback *p = *callback;
1873  *callback = (*callback)->next;
1874  free(p);
1875  continue;
1876  }
1877 
1878  bool call_it = (*callback)->callback &&
1879  ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1880  timeval_compare(&now, &(*callback)->when) >= 0);
1881 
1882  if (call_it)
1883  target_call_timer_callback(*callback, &now);
1884 
1885  callback = &(*callback)->next;
1886  }
1887 
1888  callback_processing = false;
1889  return ERROR_OK;
1890 }
1891 
1893 {
1895 }
1896 
1897 /* invoke periodic callbacks immediately */
1899 {
1901 }
1902 
1903 /* Prints the working area layout for debug purposes */
1904 static void print_wa_layout(struct target *target)
1905 {
1906  struct working_area *c = target->working_areas;
1907 
1908  while (c) {
1909  LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1910  c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1911  c->address, c->address + c->size - 1, c->size);
1912  c = c->next;
1913  }
1914 }
1915 
1916 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1917 static void target_split_working_area(struct working_area *area, uint32_t size)
1918 {
1919  assert(area->free); /* Shouldn't split an allocated area */
1920  assert(size <= area->size); /* Caller should guarantee this */
1921 
1922  /* Split only if not already the right size */
1923  if (size < area->size) {
1924  struct working_area *new_wa = malloc(sizeof(*new_wa));
1925 
1926  if (new_wa == NULL)
1927  return;
1928 
1929  new_wa->next = area->next;
1930  new_wa->size = area->size - size;
1931  new_wa->address = area->address + size;
1932  new_wa->backup = NULL;
1933  new_wa->user = NULL;
1934  new_wa->free = true;
1935 
1936  area->next = new_wa;
1937  area->size = size;
1938 
1939  /* If backup memory was allocated to this area, it has the wrong size
1940  * now so free it and it will be reallocated if/when needed */
1941  free(area->backup);
1942  area->backup = NULL;
1943  }
1944 }
1945 
1946 /* Merge all adjacent free areas into one */
1948 {
1949  struct working_area *c = target->working_areas;
1950 
1951  while (c && c->next) {
1952  assert(c->next->address == c->address + c->size); /* This is an invariant */
1953 
1954  /* Find two adjacent free areas */
1955  if (c->free && c->next->free) {
1956  /* Merge the last into the first */
1957  c->size += c->next->size;
1958 
1959  /* Remove the last */
1960  struct working_area *to_be_freed = c->next;
1961  c->next = c->next->next;
1962  free(to_be_freed->backup);
1963  free(to_be_freed);
1964 
1965  /* If backup memory was allocated to the remaining area, it's has
1966  * the wrong size now */
1967  free(c->backup);
1968  c->backup = NULL;
1969  } else {
1970  c = c->next;
1971  }
1972  }
1973 }
1974 
1975 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1976 {
1977  /* Reevaluate working area address based on MMU state*/
1978  if (target->working_areas == NULL) {
1979  int retval;
1980  int enabled;
1981 
1982  retval = target->type->mmu(target, &enabled);
1983  if (retval != ERROR_OK)
1984  return retval;
1985 
1986  if (!enabled) {
1987  if (target->working_area_phys_spec) {
1988  LOG_DEBUG("MMU disabled, using physical "
1989  "address for working memory " TARGET_ADDR_FMT,
1990  target->working_area_phys);
1991  target->working_area = target->working_area_phys;
1992  } else {
1993  LOG_ERROR("No working memory available. "
1994  "Specify -work-area-phys to target.");
1996  }
1997  } else {
1998  if (target->working_area_virt_spec) {
1999  LOG_DEBUG("MMU enabled, using virtual "
2000  "address for working memory " TARGET_ADDR_FMT,
2001  target->working_area_virt);
2002  target->working_area = target->working_area_virt;
2003  } else {
2004  LOG_ERROR("No working memory available. "
2005  "Specify -work-area-virt to target.");
2007  }
2008  }
2009 
2010  /* Set up initial working area on first call */
2011  struct working_area *new_wa = malloc(sizeof(*new_wa));
2012  if (new_wa) {
2013  new_wa->next = NULL;
2014  new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
2015  new_wa->address = target->working_area;
2016  new_wa->backup = NULL;
2017  new_wa->user = NULL;
2018  new_wa->free = true;
2019  }
2020 
2021  target->working_areas = new_wa;
2022  }
2023 
2024  /* only allocate multiples of 4 byte */
2025  if (size % 4)
2026  size = (size + 3) & (~3UL);
2027 
2028  struct working_area *c = target->working_areas;
2029 
2030  /* Find the first large enough working area */
2031  while (c) {
2032  if (c->free && c->size >= size)
2033  break;
2034  c = c->next;
2035  }
2036 
2037  if (c == NULL)
2039 
2040  /* Split the working area into the requested size */
2041  target_split_working_area(c, size);
2042 
2043  LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
2044  size, c->address);
2045 
2046  if (target->backup_working_area) {
2047  if (c->backup == NULL) {
2048  c->backup = malloc(c->size);
2049  if (c->backup == NULL)
2050  return ERROR_FAIL;
2051  }
2052 
2053  int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
2054  if (retval != ERROR_OK)
2055  return retval;
2056  }
2057 
2058  /* mark as used, and return the new (reused) area */
2059  c->free = false;
2060  *area = c;
2061 
2062  /* user pointer */
2063  c->user = area;
2064 
2065  print_wa_layout(target);
2066 
2067  return ERROR_OK;
2068 }
2069 
2070 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
2071 {
2072  int retval;
2073 
2074  retval = target_alloc_working_area_try(target, size, area);
2076  LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
2077  return retval;
2078 
2079 }
2080 
2081 static int target_restore_working_area(struct target *target, struct working_area *area)
2082 {
2083  int retval = ERROR_OK;
2084 
2085  if (target->backup_working_area && area->backup != NULL) {
2086  retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
2087  if (retval != ERROR_OK)
2088  LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2089  area->size, area->address);
2090  }
2091 
2092  return retval;
2093 }
2094 
2095 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
2096 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
2097 {
2098  int retval = ERROR_OK;
2099 
2100  if (area->free)
2101  return retval;
2102 
2103  if (restore) {
2104  retval = target_restore_working_area(target, area);
2105  /* REVISIT: Perhaps the area should be freed even if restoring fails. */
2106  if (retval != ERROR_OK)
2107  return retval;
2108  }
2109 
2110  area->free = true;
2111 
2112  LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2113  area->size, area->address);
2114 
2115  /* mark user pointer invalid */
2116  /* TODO: Is this really safe? It points to some previous caller's memory.
2117  * How could we know that the area pointer is still in that place and not
2118  * some other vital data? What's the purpose of this, anyway? */
2119  *area->user = NULL;
2120  area->user = NULL;
2121 
2123 
2124  print_wa_layout(target);
2125 
2126  return retval;
2127 }
2128 
2130 {
2131  return target_free_working_area_restore(target, area, 1);
2132 }
2133 
2134 /* free resources and restore memory, if restoring memory fails,
2135  * free up resources anyway
2136  */
2137 static void target_free_all_working_areas_restore(struct target *target, int restore)
2138 {
2139  struct working_area *c = target->working_areas;
2140 
2141  LOG_DEBUG("freeing all working areas");
2142 
2143  /* Loop through all areas, restoring the allocated ones and marking them as free */
2144  while (c) {
2145  if (!c->free) {
2146  if (restore)
2147  target_restore_working_area(target, c);
2148  c->free = true;
2149  *c->user = NULL; /* Same as above */
2150  c->user = NULL;
2151  }
2152  c = c->next;
2153  }
2154 
2155  /* Run a merge pass to combine all areas into one */
2157 
2158  print_wa_layout(target);
2159 }
2160 
2162 {
2164 
2165  /* Now we have none or only one working area marked as free */
2166  if (target->working_areas) {
2167  /* Free the last one to allow on-the-fly moving and resizing */
2168  free(target->working_areas->backup);
2169  free(target->working_areas);
2170  target->working_areas = NULL;
2171  }
2172 }
2173 
2174 /* Find the largest number of bytes that can be allocated */
2176 {
2177  struct working_area *c = target->working_areas;
2178  uint32_t max_size = 0;
2179 
2180  if (c == NULL)
2181  return target->working_area_size;
2182 
2183  while (c) {
2184  if (c->free && max_size < c->size)
2185  max_size = c->size;
2186 
2187  c = c->next;
2188  }
2189 
2190  return max_size;
2191 }
2192 
2193 static void target_destroy(struct target *target)
2194 {
2195  if (target->type->deinit_target)
2196  target->type->deinit_target(target);
2197 
2198  free(target->semihosting);
2199 
2201 
2202  struct target_event_action *teap = target->event_action;
2203  while (teap) {
2204  struct target_event_action *next = teap->next;
2205  Jim_DecrRefCount(teap->interp, teap->body);
2206  free(teap);
2207  teap = next;
2208  }
2209 
2211 
2212  /* release the targets SMP list */
2213  if (target->smp) {
2214  struct target_list *head = target->head;
2215  while (head != NULL) {
2216  struct target_list *pos = head->next;
2217  head->target->smp = 0;
2218  free(head);
2219  head = pos;
2220  }
2221  target->smp = 0;
2222  }
2223 
2224  rtos_destroy(target);
2225 
2226  free(target->gdb_port_override);
2227  free(target->type);
2228  free(target->trace_info);
2229  free(target->fileio_info);
2230  free(target->cmd_name);
2231  free(target);
2232 }
2233 
2234 void target_quit(void)
2235 {
2237  while (pe) {
2238  struct target_event_callback *t = pe->next;
2239  free(pe);
2240  pe = t;
2241  }
2242  target_event_callbacks = NULL;
2243 
2245  while (pt) {
2246  struct target_timer_callback *t = pt->next;
2247  free(pt);
2248  pt = t;
2249  }
2250  target_timer_callbacks = NULL;
2251 
2252  for (struct target *target = all_targets; target;) {
2253  struct target *tmp;
2254 
2255  tmp = target->next;
2257  target = tmp;
2258  }
2259 
2260  all_targets = NULL;
2261 }
2262 
2264 {
2265  int retval;
2266  if (target == NULL) {
2267  LOG_WARNING("No target has been configured");
2268  return ERROR_OK;
2269  }
2270 
2271  if (target->state != TARGET_HALTED)
2272  return ERROR_OK;
2273 
2274  retval = target->type->arch_state(target);
2275  return retval;
2276 }
2277 
2279  struct gdb_fileio_info *fileio_info)
2280 {
2281  /* If target does not support semi-hosting function, target
2282  has no need to provide .get_gdb_fileio_info callback.
2283  It just return ERROR_FAIL and gdb_server will return "Txx"
2284  as target halted every time. */
2285  return ERROR_FAIL;
2286 }
2287 
2289  int retcode, int fileio_errno, bool ctrl_c)
2290 {
2291  return ERROR_OK;
2292 }
2293 
2294 int target_profiling_default(struct target *target, uint32_t *samples,
2295  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2296 {
2297  struct timeval timeout, now;
2298 
2299  gettimeofday(&timeout, NULL);
2300  timeval_add_time(&timeout, seconds, 0);
2301 
2302  LOG_INFO("Starting profiling. Halting and resuming the"
2303  " target as often as we can...");
2304 
2305  uint32_t sample_count = 0;
2306  /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2307  struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2308 
2309  int retval = ERROR_OK;
2310  for (;;) {
2311  target_poll(target);
2312  if (target->state == TARGET_HALTED) {
2313  uint32_t t = buf_get_u32(reg->value, 0, 32);
2314  samples[sample_count++] = t;
2315  /* current pc, addr = 0, do not handle breakpoints, not debugging */
2316  retval = target_resume(target, 1, 0, 0, 0);
2317  target_poll(target);
2318  alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2319  } else if (target->state == TARGET_RUNNING) {
2320  /* We want to quickly sample the PC. */
2321  retval = target_halt(target);
2322  } else {
2323  LOG_INFO("Target not halted or running");
2324  retval = ERROR_OK;
2325  break;
2326  }
2327 
2328  if (retval != ERROR_OK)
2329  break;
2330 
2331  gettimeofday(&now, NULL);
2332  if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2333  LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2334  break;
2335  }
2336  }
2337 
2338  *num_samples = sample_count;
2339  return retval;
2340 }
2341 
2342 /* Single aligned words are guaranteed to use 16 or 32 bit access
2343  * mode respectively, otherwise data is handled as quickly as
2344  * possible
2345  */
2346 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2347 {
2348  LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2349  size, address);
2350 
2351  if (!target_was_examined(target)) {
2352  LOG_ERROR("Target not examined yet");
2353  return ERROR_FAIL;
2354  }
2355 
2356  if (size == 0)
2357  return ERROR_OK;
2358 
2359  if ((address + size - 1) < address) {
2360  /* GDB can request this when e.g. PC is 0xfffffffc */
2361  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2362  address,
2363  size);
2364  return ERROR_FAIL;
2365  }
2366 
2367  return target->type->write_buffer(target, address, size, buffer);
2368 }
2369 
2371  target_addr_t address, uint32_t count, const uint8_t *buffer)
2372 {
2373  uint32_t size;
2374 
2375  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2376  * will have something to do with the size we leave to it. */
2377  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2378  if (address & size) {
2379  int retval = target_write_memory(target, address, size, 1, buffer);
2380  if (retval != ERROR_OK)
2381  return retval;
2382  address += size;
2383  count -= size;
2384  buffer += size;
2385  }
2386  }
2387 
2388  /* Write the data with as large access size as possible. */
2389  for (; size > 0; size /= 2) {
2390  uint32_t aligned = count - count % size;
2391  if (aligned > 0) {
2392  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2393  if (retval != ERROR_OK)
2394  return retval;
2395  address += aligned;
2396  count -= aligned;
2397  buffer += aligned;
2398  }
2399  }
2400 
2401  return ERROR_OK;
2402 }
2403 
2404 /* Single aligned words are guaranteed to use 16 or 32 bit access
2405  * mode respectively, otherwise data is handled as quickly as
2406  * possible
2407  */
2408 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2409 {
2410  LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2411  size, address);
2412 
2413  if (!target_was_examined(target)) {
2414  LOG_ERROR("Target not examined yet");
2415  return ERROR_FAIL;
2416  }
2417 
2418  if (size == 0)
2419  return ERROR_OK;
2420 
2421  if ((address + size - 1) < address) {
2422  /* GDB can request this when e.g. PC is 0xfffffffc */
2423  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2424  address,
2425  size);
2426  return ERROR_FAIL;
2427  }
2428 
2429  return target->type->read_buffer(target, address, size, buffer);
2430 }
2431 
2432 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2433 {
2434  uint32_t size;
2435 
2436  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2437  * will have something to do with the size we leave to it. */
2438  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2439  if (address & size) {
2440  int retval = target_read_memory(target, address, size, 1, buffer);
2441  if (retval != ERROR_OK)
2442  return retval;
2443  address += size;
2444  count -= size;
2445  buffer += size;
2446  }
2447  }
2448 
2449  /* Read the data with as large access size as possible. */
2450  for (; size > 0; size /= 2) {
2451  uint32_t aligned = count - count % size;
2452  if (aligned > 0) {
2453  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2454  if (retval != ERROR_OK)
2455  return retval;
2456  address += aligned;
2457  count -= aligned;
2458  buffer += aligned;
2459  }
2460  }
2461 
2462  return ERROR_OK;
2463 }
2464 
2465 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2466 {
2467  uint8_t *buffer;
2468  int retval;
2469  uint32_t i;
2470  uint32_t checksum = 0;
2471  if (!target_was_examined(target)) {
2472  LOG_ERROR("Target not examined yet");
2473  return ERROR_FAIL;
2474  }
2475 
2476  retval = target->type->checksum_memory(target, address, size, &checksum);
2477  if (retval != ERROR_OK) {
2478  buffer = malloc(size);
2479  if (buffer == NULL) {
2480  LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2482  }
2483  retval = target_read_buffer(target, address, size, buffer);
2484  if (retval != ERROR_OK) {
2485  free(buffer);
2486  return retval;
2487  }
2488 
2489  /* convert to target endianness */
2490  for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2491  uint32_t target_data;
2492  target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2493  target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2494  }
2495 
2496  retval = image_calculate_checksum(buffer, size, &checksum);
2497  free(buffer);
2498  }
2499 
2500  *crc = checksum;
2501 
2502  return retval;
2503 }
2504 
2506  struct target_memory_check_block *blocks, int num_blocks,
2507  uint8_t erased_value)
2508 {
2509  if (!target_was_examined(target)) {
2510  LOG_ERROR("Target not examined yet");
2511  return ERROR_FAIL;
2512  }
2513 
2514  if (target->type->blank_check_memory == NULL)
2516 
2517  return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2518 }
2519 
2520 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2521 {
2522  uint8_t value_buf[8];
2523  if (!target_was_examined(target)) {
2524  LOG_ERROR("Target not examined yet");
2525  return ERROR_FAIL;
2526  }
2527 
2528  int retval = target_read_memory(target, address, 8, 1, value_buf);
2529 
2530  if (retval == ERROR_OK) {
2531  *value = target_buffer_get_u64(target, value_buf);
2532  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2533  address,
2534  *value);
2535  } else {
2536  *value = 0x0;
2537  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2538  address);
2539  }
2540 
2541  return retval;
2542 }
2543 
2544 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2545 {
2546  uint8_t value_buf[4];
2547  if (!target_was_examined(target)) {
2548  LOG_ERROR("Target not examined yet");
2549  return ERROR_FAIL;
2550  }
2551 
2552  int retval = target_read_memory(target, address, 4, 1, value_buf);
2553 
2554  if (retval == ERROR_OK) {
2555  *value = target_buffer_get_u32(target, value_buf);
2556  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2557  address,
2558  *value);
2559  } else {
2560  *value = 0x0;
2561  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2562  address);
2563  }
2564 
2565  return retval;
2566 }
2567 
2568 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2569 {
2570  uint8_t value_buf[2];
2571  if (!target_was_examined(target)) {
2572  LOG_ERROR("Target not examined yet");
2573  return ERROR_FAIL;
2574  }
2575 
2576  int retval = target_read_memory(target, address, 2, 1, value_buf);
2577 
2578  if (retval == ERROR_OK) {
2579  *value = target_buffer_get_u16(target, value_buf);
2580  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2581  address,
2582  *value);
2583  } else {
2584  *value = 0x0;
2585  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2586  address);
2587  }
2588 
2589  return retval;
2590 }
2591 
2592 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2593 {
2594  if (!target_was_examined(target)) {
2595  LOG_ERROR("Target not examined yet");
2596  return ERROR_FAIL;
2597  }
2598 
2599  int retval = target_read_memory(target, address, 1, 1, value);
2600 
2601  if (retval == ERROR_OK) {
2602  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2603  address,
2604  *value);
2605  } else {
2606  *value = 0x0;
2607  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2608  address);
2609  }
2610 
2611  return retval;
2612 }
2613 
2614 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2615 {
2616  int retval;
2617  uint8_t value_buf[8];
2618  if (!target_was_examined(target)) {
2619  LOG_ERROR("Target not examined yet");
2620  return ERROR_FAIL;
2621  }
2622 
2623  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2624  address,
2625  value);
2626 
2627  target_buffer_set_u64(target, value_buf, value);
2628  retval = target_write_memory(target, address, 8, 1, value_buf);
2629  if (retval != ERROR_OK)
2630  LOG_DEBUG("failed: %i", retval);
2631 
2632  return retval;
2633 }
2634 
2635 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2636 {
2637  int retval;
2638  uint8_t value_buf[4];
2639  if (!target_was_examined(target)) {
2640  LOG_ERROR("Target not examined yet");
2641  return ERROR_FAIL;
2642  }
2643 
2644  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2645  address,
2646  value);
2647 
2648  target_buffer_set_u32(target, value_buf, value);
2649  retval = target_write_memory(target, address, 4, 1, value_buf);
2650  if (retval != ERROR_OK)
2651  LOG_DEBUG("failed: %i", retval);
2652 
2653  return retval;
2654 }
2655 
2656 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2657 {
2658  int retval;
2659  uint8_t value_buf[2];
2660  if (!target_was_examined(target)) {
2661  LOG_ERROR("Target not examined yet");
2662  return ERROR_FAIL;
2663  }
2664 
2665  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2666  address,
2667  value);
2668 
2669  target_buffer_set_u16(target, value_buf, value);
2670  retval = target_write_memory(target, address, 2, 1, value_buf);
2671  if (retval != ERROR_OK)
2672  LOG_DEBUG("failed: %i", retval);
2673 
2674  return retval;
2675 }
2676 
2677 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2678 {
2679  int retval;
2680  if (!target_was_examined(target)) {
2681  LOG_ERROR("Target not examined yet");
2682  return ERROR_FAIL;
2683  }
2684 
2685  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2686  address, value);
2687 
2688  retval = target_write_memory(target, address, 1, 1, &value);
2689  if (retval != ERROR_OK)
2690  LOG_DEBUG("failed: %i", retval);
2691 
2692  return retval;
2693 }
2694 
2695 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2696 {
2697  int retval;
2698  uint8_t value_buf[8];
2699  if (!target_was_examined(target)) {
2700  LOG_ERROR("Target not examined yet");
2701  return ERROR_FAIL;
2702  }
2703 
2704  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2705  address,
2706  value);
2707 
2708  target_buffer_set_u64(target, value_buf, value);
2709  retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2710  if (retval != ERROR_OK)
2711  LOG_DEBUG("failed: %i", retval);
2712 
2713  return retval;
2714 }
2715 
2716 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2717 {
2718  int retval;
2719  uint8_t value_buf[4];
2720  if (!target_was_examined(target)) {
2721  LOG_ERROR("Target not examined yet");
2722  return ERROR_FAIL;
2723  }
2724 
2725  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2726  address,
2727  value);
2728 
2729  target_buffer_set_u32(target, value_buf, value);
2730  retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2731  if (retval != ERROR_OK)
2732  LOG_DEBUG("failed: %i", retval);
2733 
2734  return retval;
2735 }
2736 
2737 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2738 {
2739  int retval;
2740  uint8_t value_buf[2];
2741  if (!target_was_examined(target)) {
2742  LOG_ERROR("Target not examined yet");
2743  return ERROR_FAIL;
2744  }
2745 
2746  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2747  address,
2748  value);
2749 
2750  target_buffer_set_u16(target, value_buf, value);
2751  retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2752  if (retval != ERROR_OK)
2753  LOG_DEBUG("failed: %i", retval);
2754 
2755  return retval;
2756 }
2757 
2758 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2759 {
2760  int retval;
2761  if (!target_was_examined(target)) {
2762  LOG_ERROR("Target not examined yet");
2763  return ERROR_FAIL;
2764  }
2765 
2766  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2767  address, value);
2768 
2769  retval = target_write_phys_memory(target, address, 1, 1, &value);
2770  if (retval != ERROR_OK)
2771  LOG_DEBUG("failed: %i", retval);
2772 
2773  return retval;
2774 }
2775 
2776 static int find_target(struct command_invocation *cmd, const char *name)
2777 {
2778  struct target *target = get_target(name);
2779  if (target == NULL) {
2780  command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2781  return ERROR_FAIL;
2782  }
2783  if (!target->tap->enabled) {
2784  command_print(cmd, "Target: TAP %s is disabled, "
2785  "can't be the current target\n",
2786  target->tap->dotted_name);
2787  return ERROR_FAIL;
2788  }
2789 
2790  cmd->ctx->current_target = target;
2791  if (cmd->ctx->current_target_override)
2793 
2794  return ERROR_OK;
2795 }
2796 
2797 
2798 COMMAND_HANDLER(handle_targets_command)
2799 {
2800  int retval = ERROR_OK;
2801  if (CMD_ARGC == 1) {
2802  retval = find_target(CMD, CMD_ARGV[0]);
2803  if (retval == ERROR_OK) {
2804  /* we're done! */
2805  return retval;
2806  }
2807  }
2808 
2809  struct target *target = all_targets;
2810  command_print(CMD, " TargetName Type Endian TapName State ");
2811  command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2812  while (target) {
2813  const char *state;
2814  char marker = ' ';
2815 
2816  if (target->tap->enabled)
2817  state = target_state_name(target);
2818  else
2819  state = "tap-disabled";
2820 
2821  if (CMD_CTX->current_target == target)
2822  marker = '*';
2823 
2824  /* keep columns lined up to match the headers above */
2826  "%2d%c %-18s %-10s %-6s %-18s %s",
2827  target->target_number,
2828  marker,
2829  target_name(target),
2830  target_type_name(target),
2831  Jim_Nvp_value2name_simple(nvp_target_endian,
2832  target->endianness)->name,
2833  target->tap->dotted_name,
2834  state);
2835  target = target->next;
2836  }
2837 
2838  return retval;
2839 }
2840 
2841 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2842 
2843 static int powerDropout;
2844 static int srstAsserted;
2845 
2846 static int runPowerRestore;
2847 static int runPowerDropout;
2848 static int runSrstAsserted;
2850 
2851 static int sense_handler(void)
2852 {
2853  static int prevSrstAsserted;
2854  static int prevPowerdropout;
2855 
2856  int retval = jtag_power_dropout(&powerDropout);
2857  if (retval != ERROR_OK)
2858  return retval;
2859 
2860  int powerRestored;
2861  powerRestored = prevPowerdropout && !powerDropout;
2862  if (powerRestored)
2863  runPowerRestore = 1;
2864 
2865  int64_t current = timeval_ms();
2866  static int64_t lastPower;
2867  bool waitMore = lastPower + 2000 > current;
2868  if (powerDropout && !waitMore) {
2869  runPowerDropout = 1;
2870  lastPower = current;
2871  }
2872 
2873  retval = jtag_srst_asserted(&srstAsserted);
2874  if (retval != ERROR_OK)
2875  return retval;
2876 
2877  int srstDeasserted;
2878  srstDeasserted = prevSrstAsserted && !srstAsserted;
2879 
2880  static int64_t lastSrst;
2881  waitMore = lastSrst + 2000 > current;
2882  if (srstDeasserted && !waitMore) {
2883  runSrstDeasserted = 1;
2884  lastSrst = current;
2885  }
2886 
2887  if (!prevSrstAsserted && srstAsserted)
2888  runSrstAsserted = 1;
2889 
2890  prevSrstAsserted = srstAsserted;
2891  prevPowerdropout = powerDropout;
2892 
2893  if (srstDeasserted || powerRestored) {
2894  /* Other than logging the event we can't do anything here.
2895  * Issuing a reset is a particularly bad idea as we might
2896  * be inside a reset already.
2897  */
2898  }
2899 
2900  return ERROR_OK;
2901 }
2902 
2903 /* process target state changes */
2904 static int handle_target(void *priv)
2905 {
2906  Jim_Interp *interp = (Jim_Interp *)priv;
2907  int retval = ERROR_OK;
2908 
2909  if (!is_jtag_poll_safe()) {
2910  /* polling is disabled currently */
2911  return ERROR_OK;
2912  }
2913 
2914  /* we do not want to recurse here... */
2915  static int recursive;
2916  if (!recursive) {
2917  recursive = 1;
2918  sense_handler();
2919  /* danger! running these procedures can trigger srst assertions and power dropouts.
2920  * We need to avoid an infinite loop/recursion here and we do that by
2921  * clearing the flags after running these events.
2922  */
2923  int did_something = 0;
2924  if (runSrstAsserted) {
2925  LOG_INFO("srst asserted detected, running srst_asserted proc.");
2926  Jim_Eval(interp, "srst_asserted");
2927  did_something = 1;
2928  }
2929  if (runSrstDeasserted) {
2930  Jim_Eval(interp, "srst_deasserted");
2931  did_something = 1;
2932  }
2933  if (runPowerDropout) {
2934  LOG_INFO("Power dropout detected, running power_dropout proc.");
2935  Jim_Eval(interp, "power_dropout");
2936  did_something = 1;
2937  }
2938  if (runPowerRestore) {
2939  Jim_Eval(interp, "power_restore");
2940  did_something = 1;
2941  }
2942 
2943  if (did_something) {
2944  /* clear detect flags */
2945  sense_handler();
2946  }
2947 
2948  /* clear action flags */
2949 
2950  runSrstAsserted = 0;
2951  runSrstDeasserted = 0;
2952  runPowerRestore = 0;
2953  runPowerDropout = 0;
2954 
2955  recursive = 0;
2956  }
2957 
2958  /* Poll targets for state changes unless that's globally disabled.
2959  * Skip targets that are currently disabled.
2960  */
2961  for (struct target *target = all_targets;
2963  target = target->next) {
2964 
2966  continue;
2967 
2968  if (!target->tap->enabled)
2969  continue;
2970 
2971  if (target->backoff.times > target->backoff.count) {
2972  /* do not poll this time as we failed previously */
2973  target->backoff.count++;
2974  continue;
2975  }
2976  target->backoff.count = 0;
2977 
2978  /* only poll target if we've got power and srst isn't asserted */
2979  if (!powerDropout && !srstAsserted) {
2980  /* polling may fail silently until the target has been examined */
2981  retval = target_poll(target);
2982  if (retval != ERROR_OK) {
2983  /* 100ms polling interval. Increase interval between polling up to 5000ms */
2984  if (target->backoff.times * polling_interval < 5000) {
2985  target->backoff.times *= 2;
2986  target->backoff.times++;
2987  }
2988 
2989  /* Tell GDB to halt the debugger. This allows the user to
2990  * run monitor commands to handle the situation.
2991  */
2993  }
2994  if (target->backoff.times > 0) {
2995  LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2997  retval = target_examine_one(target);
2998  /* Target examination could have failed due to unstable connection,
2999  * but we set the examined flag anyway to repoll it later */
3000  if (retval != ERROR_OK) {
3001  target->examined = true;
3002  LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
3004  return retval;
3005  }
3006  }
3007 
3008  /* Since we succeeded, we reset backoff count */
3009  target->backoff.times = 0;
3010  }
3011  }
3012 
3013  return retval;
3014 }
3015 
3016 COMMAND_HANDLER(handle_reg_command)
3017 {
3018  struct target *target;
3019  struct reg *reg = NULL;
3020  unsigned count = 0;
3021  char *value;
3022 
3023  LOG_DEBUG("-");
3024 
3025  target = get_current_target(CMD_CTX);
3026 
3027  /* list all available registers for the current target */
3028  if (CMD_ARGC == 0) {
3029  struct reg_cache *cache = target->reg_cache;
3030 
3031  count = 0;
3032  while (cache) {
3033  unsigned i;
3034 
3035  command_print(CMD, "===== %s", cache->name);
3036 
3037  for (i = 0, reg = cache->reg_list;
3038  i < cache->num_regs;
3039  i++, reg++, count++) {
3040  if (reg->exist == false || reg->hidden)
3041  continue;
3042  /* only print cached values if they are valid */
3043  if (reg->valid) {
3044  value = buf_to_hex_str(reg->value,
3045  reg->size);
3047  "(%i) %s (/%" PRIu32 "): 0x%s%s",
3048  count, reg->name,
3049  reg->size, value,
3050  reg->dirty
3051  ? " (dirty)"
3052  : "");
3053  free(value);
3054  } else {
3055  command_print(CMD, "(%i) %s (/%" PRIu32 ")",
3056  count, reg->name,
3057  reg->size);
3058  }
3059  }
3060  cache = cache->next;
3061  }
3062 
3063  return ERROR_OK;
3064  }
3065 
3066  /* access a single register by its ordinal number */
3067  if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
3068  unsigned num;
3069  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
3070 
3071  struct reg_cache *cache = target->reg_cache;
3072  count = 0;
3073  while (cache) {
3074  unsigned i;
3075  for (i = 0; i < cache->num_regs; i++) {
3076  if (count++ == num) {
3077  reg = &cache->reg_list[i];
3078  break;
3079  }
3080  }
3081  if (reg)
3082  break;
3083  cache = cache->next;
3084  }
3085 
3086  if (!reg) {
3087  command_print(CMD, "%i is out of bounds, the current target "
3088  "has only %i registers (0 - %i)", num, count, count - 1);
3089  return ERROR_OK;
3090  }
3091  } else {
3092  /* access a single register by its name */
3093  reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
3094 
3095  if (!reg)
3096  goto not_found;
3097  }
3098 
3099  assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
3100 
3101  if (!reg->exist)
3102  goto not_found;
3103 
3104  /* display a register */
3105  if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
3106  && (CMD_ARGV[1][0] <= '9')))) {
3107  if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
3108  reg->valid = 0;
3109 
3110  if (reg->valid == 0)
3111  reg->type->get(reg);
3112  value = buf_to_hex_str(reg->value, reg->size);
3113  command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3114  free(value);
3115  return ERROR_OK;
3116  }
3117 
3118  /* set register value */
3119  if (CMD_ARGC == 2) {
3120  uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
3121  if (buf == NULL)
3122  return ERROR_FAIL;
3123  str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
3124 
3125  reg->type->set(reg, buf);
3126 
3127  value = buf_to_hex_str(reg->value, reg->size);
3128  command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3129  free(value);
3130 
3131  free(buf);
3132 
3133  return ERROR_OK;
3134  }
3135 
3137 
3138 not_found:
3139  command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
3140  return ERROR_OK;
3141 }
3142 
3143 COMMAND_HANDLER(handle_poll_command)
3144 {
3145  int retval = ERROR_OK;
3147 
3148  if (CMD_ARGC == 0) {
3149  command_print(CMD, "background polling: %s",
3150  jtag_poll_get_enabled() ? "on" : "off");
3151  command_print(CMD, "TAP: %s (%s)",
3152  target->tap->dotted_name,
3153  target->tap->enabled ? "enabled" : "disabled");
3154  if (!target->tap->enabled)
3155  return ERROR_OK;
3156  retval = target_poll(target);
3157  if (retval != ERROR_OK)
3158  return retval;
3159  retval = target_arch_state(target);
3160  if (retval != ERROR_OK)
3161  return retval;
3162  } else if (CMD_ARGC == 1) {
3163  bool enable;
3164  COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3165  jtag_poll_set_enabled(enable);
3166  } else
3168 
3169  return retval;
3170 }
3171 
3172 COMMAND_HANDLER(handle_wait_halt_command)
3173 {
3174  if (CMD_ARGC > 1)
3176 
3177  unsigned ms = DEFAULT_HALT_TIMEOUT;
3178  if (1 == CMD_ARGC) {
3179  int retval = parse_uint(CMD_ARGV[0], &ms);
3180  if (ERROR_OK != retval)
3182  }
3183 
3185  return target_wait_state(target, TARGET_HALTED, ms);
3186 }
3187 
3188 /* wait for target state to change. The trick here is to have a low
3189  * latency for short waits and not to suck up all the CPU time
3190  * on longer waits.
3191  *
3192  * After 500ms, keep_alive() is invoked
3193  */
3195 {
3196  int retval;
3197  int64_t then = 0, cur;
3198  bool once = true;
3199 
3200  for (;;) {
3201  retval = target_poll(target);
3202  if (retval != ERROR_OK)
3203  return retval;
3204  if (target->state == state)
3205  break;
3206  cur = timeval_ms();
3207  if (once) {
3208  once = false;
3209  then = timeval_ms();
3210  LOG_DEBUG("waiting for target %s...",
3211  Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3212  }
3213 
3214  if (cur-then > 500)
3215  keep_alive();
3216 
3217  if ((cur-then) > ms) {
3218  LOG_ERROR("timed out while waiting for target %s",
3219  Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3220  return ERROR_FAIL;
3221  }
3222  }
3223 
3224  return ERROR_OK;
3225 }
3226 
3227 COMMAND_HANDLER(handle_halt_command)
3228 {
3229  LOG_DEBUG("-");
3230 
3232 
3233  target->verbose_halt_msg = true;
3234 
3235  int retval = target_halt(target);
3236  if (ERROR_OK != retval)
3237  return retval;
3238 
3239  if (CMD_ARGC == 1) {
3240  unsigned wait_local;
3241  retval = parse_uint(CMD_ARGV[0], &wait_local);
3242  if (ERROR_OK != retval)
3244  if (!wait_local)
3245  return ERROR_OK;
3246  }
3247 
3248  return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3249 }
3250 
3251 COMMAND_HANDLER(handle_soft_reset_halt_command)
3252 {
3254 
3255  LOG_USER("requesting target halt and executing a soft reset");
3256 
3257  target_soft_reset_halt(target);
3258 
3259  return ERROR_OK;
3260 }
3261 
3262 COMMAND_HANDLER(handle_reset_command)
3263 {
3264  if (CMD_ARGC > 1)
3266 
3267  enum target_reset_mode reset_mode = RESET_RUN;
3268  if (CMD_ARGC == 1) {
3269  const Jim_Nvp *n;
3270  n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3271  if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3273  reset_mode = n->value;
3274  }
3275 
3276  /* reset *all* targets */
3277  return target_process_reset(CMD, reset_mode);
3278 }
3279 
3280 
3281 COMMAND_HANDLER(handle_resume_command)
3282 {
3283  int current = 1;
3284  if (CMD_ARGC > 1)
3286 
3288 
3289  /* with no CMD_ARGV, resume from current pc, addr = 0,
3290  * with one arguments, addr = CMD_ARGV[0],
3291  * handle breakpoints, not debugging */
3292  target_addr_t addr = 0;
3293  if (CMD_ARGC == 1) {
3294  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3295  current = 0;
3296  }
3297 
3298  return target_resume(target, current, addr, 1, 0);
3299 }
3300 
3301 COMMAND_HANDLER(handle_step_command)
3302 {
3303  if (CMD_ARGC > 1)
3305 
3306  LOG_DEBUG("-");
3307 
3308  /* with no CMD_ARGV, step from current pc, addr = 0,
3309  * with one argument addr = CMD_ARGV[0],
3310  * handle breakpoints, debugging */
3311  target_addr_t addr = 0;
3312  int current_pc = 1;
3313  if (CMD_ARGC == 1) {
3314  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3315  current_pc = 0;
3316  }
3317 
3319 
3320  return target_step(target, current_pc, addr, 1);
3321 }
3322 
3324  struct target *target, target_addr_t address, unsigned size,
3325  unsigned count, const uint8_t *buffer)
3326 {
3327  const unsigned line_bytecnt = 32;
3328  unsigned line_modulo = line_bytecnt / size;
3329 
3330  char output[line_bytecnt * 4 + 1];
3331  unsigned output_len = 0;
3332 
3333  const char *value_fmt;
3334  switch (size) {
3335  case 8:
3336  value_fmt = "%16.16"PRIx64" ";
3337  break;
3338  case 4:
3339  value_fmt = "%8.8"PRIx64" ";
3340  break;
3341  case 2:
3342  value_fmt = "%4.4"PRIx64" ";
3343  break;
3344  case 1:
3345  value_fmt = "%2.2"PRIx64" ";
3346  break;
3347  default:
3348  /* "can't happen", caller checked */
3349  LOG_ERROR("invalid memory read size: %u", size);
3350  return;
3351  }
3352 
3353  for (unsigned i = 0; i < count; i++) {
3354  if (i % line_modulo == 0) {
3355  output_len += snprintf(output + output_len,
3356  sizeof(output) - output_len,
3357  TARGET_ADDR_FMT ": ",
3358  (address + (i * size)));
3359  }
3360 
3361  uint64_t value = 0;
3362  const uint8_t *value_ptr = buffer + i * size;
3363  switch (size) {
3364  case 8:
3365  value = target_buffer_get_u64(target, value_ptr);
3366  break;
3367  case 4:
3368  value = target_buffer_get_u32(target, value_ptr);
3369  break;
3370  case 2:
3371  value = target_buffer_get_u16(target, value_ptr);
3372  break;
3373  case 1:
3374  value = *value_ptr;
3375  }
3376  output_len += snprintf(output + output_len,
3377  sizeof(output) - output_len,
3378  value_fmt, value);
3379 
3380  if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3381  command_print(cmd, "%s", output);
3382  output_len = 0;
3383  }
3384  }
3385 }
3386 
3387 COMMAND_HANDLER(handle_md_command)
3388 {
3389  if (CMD_ARGC < 1)
3391 
3392  unsigned size = 0;
3393  switch (CMD_NAME[2]) {
3394  case 'd':
3395  size = 8;
3396  break;
3397  case 'w':
3398  size = 4;
3399  break;
3400  case 'h':
3401  size = 2;
3402  break;
3403  case 'b':
3404  size = 1;
3405  break;
3406  default:
3408  }
3409 
3410  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3411  int (*fn)(struct target *target,
3412  target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3413  if (physical) {
3414  CMD_ARGC--;
3415  CMD_ARGV++;
3417  } else
3418  fn = target_read_memory;
3419  if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3421 
3422  target_addr_t address;
3423  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3424 
3425  unsigned count = 1;
3426  if (CMD_ARGC == 2)
3427  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3428 
3429  uint8_t *buffer = calloc(count, size);
3430  if (buffer == NULL) {
3431  LOG_ERROR("Failed to allocate md read buffer");
3432  return ERROR_FAIL;
3433  }
3434 
3435  struct target *target = get_current_target(CMD_CTX);
3436  int retval = fn(target, address, size, count, buffer);
3437  if (ERROR_OK == retval)
3438  target_handle_md_output(CMD, target, address, size, count, buffer);
3439 
3440  free(buffer);
3441 
3442  return retval;
3443 }
3444 
3445 typedef int (*target_write_fn)(struct target *target,
3446  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3447 
3448 static int target_fill_mem(struct target *target,
3449  target_addr_t address,
3450  target_write_fn fn,
3451  unsigned data_size,
3452  /* value */
3453  uint64_t b,
3454  /* count */
3455  unsigned c)
3456 {
3457  /* We have to write in reasonably large chunks to be able
3458  * to fill large memory areas with any sane speed */
3459  const unsigned chunk_size = 16384;
3460  uint8_t *target_buf = malloc(chunk_size * data_size);
3461  if (target_buf == NULL) {
3462  LOG_ERROR("Out of memory");
3463  return ERROR_FAIL;
3464  }
3465 
3466  for (unsigned i = 0; i < chunk_size; i++) {
3467  switch (data_size) {
3468  case 8:
3469  target_buffer_set_u64(target, target_buf + i * data_size, b);
3470  break;
3471  case 4:
3472  target_buffer_set_u32(target, target_buf + i * data_size, b);
3473  break;
3474  case 2:
3475  target_buffer_set_u16(target, target_buf + i * data_size, b);
3476  break;
3477  case 1:
3478  target_buffer_set_u8(target, target_buf + i * data_size, b);
3479  break;
3480  default:
3481  exit(-1);
3482  }
3483  }
3484 
3485  int retval = ERROR_OK;
3486 
3487  for (unsigned x = 0; x < c; x += chunk_size) {
3488  unsigned current;
3489  current = c - x;
3490  if (current > chunk_size)
3491  current = chunk_size;
3492  retval = fn(target, address + x * data_size, data_size, current, target_buf);
3493  if (retval != ERROR_OK)
3494  break;
3495  /* avoid GDB timeouts */
3496  keep_alive();
3497  }
3498  free(target_buf);
3499 
3500  return retval;
3501 }
3502 
3503 
3504 COMMAND_HANDLER(handle_mw_command)
3505 {
3506  if (CMD_ARGC < 2)
3508  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3509  target_write_fn fn;
3510  if (physical) {
3511  CMD_ARGC--;
3512  CMD_ARGV++;
3514  } else
3515  fn = target_write_memory;
3516  if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3518 
3519  target_addr_t address;
3520  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3521 
3522  uint64_t value;
3523  COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3524 
3525  unsigned count = 1;
3526  if (CMD_ARGC == 3)
3527  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3528 
3529  struct target *target = get_current_target(CMD_CTX);
3530  unsigned wordsize;
3531  switch (CMD_NAME[2]) {
3532  case 'd':
3533  wordsize = 8;
3534  break;
3535  case 'w':
3536  wordsize = 4;
3537  break;
3538  case 'h':
3539  wordsize = 2;
3540  break;
3541  case 'b':
3542  wordsize = 1;
3543  break;
3544  default:
3546  }
3547 
3548  return target_fill_mem(target, address, fn, wordsize, value, count);
3549 }
3550 
3551 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3552  target_addr_t *min_address, target_addr_t *max_address)
3553 {
3554  if (CMD_ARGC < 1 || CMD_ARGC > 5)
3556 
3557  /* a base address isn't always necessary,
3558  * default to 0x0 (i.e. don't relocate) */
3559  if (CMD_ARGC >= 2) {
3561  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3562  image->base_address = addr;
3563  image->base_address_set = true;
3564  } else
3565  image->base_address_set = false;
3566 
3567  image->start_address_set = false;
3568 
3569  if (CMD_ARGC >= 4)
3570  COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3571  if (CMD_ARGC == 5) {
3572  COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3573  /* use size (given) to find max (required) */
3574  *max_address += *min_address;
3575  }
3576 
3577  if (*min_address > *max_address)
3579 
3580  return ERROR_OK;
3581 }
3582 
3583 COMMAND_HANDLER(handle_load_image_command)
3584 {
3585  uint8_t *buffer;
3586  size_t buf_cnt;
3587  uint32_t image_size;
3588  target_addr_t min_address = 0;
3589  target_addr_t max_address = -1;
3590  struct image image;
3591 
3592  int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3593  &image, &min_address, &max_address);
3594  if (ERROR_OK != retval)
3595  return retval;
3596 
3597  struct target *target = get_current_target(CMD_CTX);
3598 
3599  struct duration bench;
3600  duration_start(&bench);
3601 
3602  if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3603  return ERROR_FAIL;
3604 
3605  image_size = 0x0;
3606  retval = ERROR_OK;
3607  for (unsigned int i = 0; i < image.num_sections; i++) {
3608  buffer = malloc(image.sections[i].size);
3609  if (buffer == NULL) {
3611  "error allocating buffer for section (%d bytes)",
3612  (int)(image.sections[i].size));
3613  retval = ERROR_FAIL;
3614  break;
3615  }
3616 
3617  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3618  if (retval != ERROR_OK) {
3619  free(buffer);
3620  break;
3621  }
3622 
3623  uint32_t offset = 0;
3624  uint32_t length = buf_cnt;
3625 
3626  /* DANGER!!! beware of unsigned comparison here!!! */
3627 
3628  if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3629  (image.sections[i].base_address < max_address)) {
3630 
3631  if (image.sections[i].base_address < min_address) {
3632  /* clip addresses below */
3633  offset += min_address-image.sections[i].base_address;
3634  length -= offset;
3635  }
3636 
3637  if (image.sections[i].base_address + buf_cnt > max_address)
3638  length -= (image.sections[i].base_address + buf_cnt)-max_address;
3639 
3640  retval = target_write_buffer(target,
3641  image.sections[i].base_address + offset, length, buffer + offset);
3642  if (retval != ERROR_OK) {
3643  free(buffer);
3644  break;
3645  }
3646  image_size += length;
3647  command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3648  (unsigned int)length,
3649  image.sections[i].base_address + offset);
3650  }
3651 
3652  free(buffer);
3653  }
3654 
3655  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3656  command_print(CMD, "downloaded %" PRIu32 " bytes "
3657  "in %fs (%0.3f KiB/s)", image_size,
3658  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3659  }
3660 
3661  image_close(&image);
3662 
3663  return retval;
3664 
3665 }
3666 
3667 COMMAND_HANDLER(handle_dump_image_command)
3668 {
3669  struct fileio *fileio;
3670  uint8_t *buffer;
3671  int retval, retvaltemp;
3672  target_addr_t address, size;
3673  struct duration bench;
3674  struct target *target = get_current_target(CMD_CTX);
3675 
3676  if (CMD_ARGC != 3)
3678 
3679  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3680  COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3681 
3682  uint32_t buf_size = (size > 4096) ? 4096 : size;
3683  buffer = malloc(buf_size);
3684  if (!buffer)
3685  return ERROR_FAIL;
3686 
3687  retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3688  if (retval != ERROR_OK) {
3689  free(buffer);
3690  return retval;
3691  }
3692 
3693  duration_start(&bench);
3694 
3695  while (size > 0) {
3696  size_t size_written;
3697  uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3698  retval = target_read_buffer(target, address, this_run_size, buffer);
3699  if (retval != ERROR_OK)
3700  break;
3701 
3702  retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3703  if (retval != ERROR_OK)
3704  break;
3705 
3706  size -= this_run_size;
3707  address += this_run_size;
3708  }
3709 
3710  free(buffer);
3711 
3712  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3713  size_t filesize;
3714  retval = fileio_size(fileio, &filesize);
3715  if (retval != ERROR_OK)
3716  return retval;
3718  "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3719  duration_elapsed(&bench), duration_kbps(&bench, filesize));
3720  }
3721 
3722  retvaltemp = fileio_close(fileio);
3723  if (retvaltemp != ERROR_OK)
3724  return retvaltemp;
3725 
3726  return retval;
3727 }
3728 
3733 };
3734 
3735 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3736 {
3737  uint8_t *buffer;
3738  size_t buf_cnt;
3739  uint32_t image_size;
3740  int retval;
3741  uint32_t checksum = 0;
3742  uint32_t mem_checksum = 0;
3743 
3744  struct image image;
3745 
3746  struct target *target = get_current_target(CMD_CTX);
3747 
3748  if (CMD_ARGC < 1)
3750 
3751  if (!target) {
3752  LOG_ERROR("no target selected");
3753  return ERROR_FAIL;
3754  }
3755 
3756  struct duration bench;
3757  duration_start(&bench);
3758 
3759  if (CMD_ARGC >= 2) {
3761  COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3762  image.base_address = addr;
3763  image.base_address_set = true;
3764  } else {
3765  image.base_address_set = false;
3766  image.base_address = 0x0;
3767  }
3768 
3769  image.start_address_set = false;
3770 
3771  retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3772  if (retval != ERROR_OK)
3773  return retval;
3774 
3775  image_size = 0x0;
3776  int diffs = 0;
3777  retval = ERROR_OK;
3778  for (unsigned int i = 0; i < image.num_sections; i++) {
3779  buffer = malloc(image.sections[i].size);
3780  if (buffer == NULL) {
3782  "error allocating buffer for section (%" PRIu32 " bytes)",
3783  image.sections[i].size);
3784  break;
3785  }
3786  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3787  if (retval != ERROR_OK) {
3788  free(buffer);
3789  break;
3790  }
3791 
3792  if (verify >= IMAGE_VERIFY) {
3793  /* calculate checksum of image */
3794  retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3795  if (retval != ERROR_OK) {
3796  free(buffer);
3797  break;
3798  }
3799 
3800  retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3801  if (retval != ERROR_OK) {
3802  free(buffer);
3803  break;
3804  }
3805  if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3806  LOG_ERROR("checksum mismatch");
3807  free(buffer);
3808  retval = ERROR_FAIL;
3809  goto done;
3810  }
3811  if (checksum != mem_checksum) {
3812  /* failed crc checksum, fall back to a binary compare */
3813  uint8_t *data;
3814 
3815  if (diffs == 0)
3816  LOG_ERROR("checksum mismatch - attempting binary compare");
3817 
3818  data = malloc(buf_cnt);
3819 
3820  retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3821  if (retval == ERROR_OK) {
3822  uint32_t t;
3823  for (t = 0; t < buf_cnt; t++) {
3824  if (data[t] != buffer[t]) {
3826  "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3827  diffs,
3828  (unsigned)(t + image.sections[i].base_address),
3829  data[t],
3830  buffer[t]);
3831  if (diffs++ >= 127) {
3832  command_print(CMD, "More than 128 errors, the rest are not printed.");
3833  free(data);
3834  free(buffer);
3835  goto done;
3836  }
3837  }
3838  keep_alive();
3839  }
3840  }
3841  free(data);
3842  }
3843  } else {
3844  command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3845  image.sections[i].base_address,
3846  buf_cnt);
3847  }
3848 
3849  free(buffer);
3850  image_size += buf_cnt;
3851  }
3852  if (diffs > 0)
3853  command_print(CMD, "No more differences found.");
3854 done:
3855  if (diffs > 0)
3856  retval = ERROR_FAIL;
3857  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3858  command_print(CMD, "verified %" PRIu32 " bytes "
3859  "in %fs (%0.3f KiB/s)", image_size,
3860  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3861  }
3862 
3863  image_close(&image);
3864 
3865  return retval;
3866 }
3867 
3868 COMMAND_HANDLER(handle_verify_image_checksum_command)
3869 {
3870  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3871 }
3872 
3873 COMMAND_HANDLER(handle_verify_image_command)
3874 {
3875  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3876 }
3877 
3878 COMMAND_HANDLER(handle_test_image_command)
3879 {
3880  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3881 }
3882 
3884 {
3885  struct target *target = get_current_target(cmd->ctx);
3886  struct breakpoint *breakpoint = target->breakpoints;
3887  while (breakpoint) {
3888  if (breakpoint->type == BKPT_SOFT) {
3889  char *buf = buf_to_hex_str(breakpoint->orig_instr,
3890  breakpoint->length);
3891  command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3892  breakpoint->address,
3893  breakpoint->length,
3894  breakpoint->set, buf);
3895  free(buf);
3896  } else {
3897  if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3898  command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3899  breakpoint->asid,
3900  breakpoint->length, breakpoint->set);
3901  else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3902  command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3903  breakpoint->address,
3904  breakpoint->length, breakpoint->set);
3905  command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3906  breakpoint->asid);
3907  } else
3908  command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3909  breakpoint->address,
3910  breakpoint->length, breakpoint->set);
3911  }
3912 
3913  breakpoint = breakpoint->next;
3914  }
3915  return ERROR_OK;
3916 }
3917 
3919  target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3920 {
3921  struct target *target = get_current_target(cmd->ctx);
3922  int retval;
3923 
3924  if (asid == 0) {
3925  retval = breakpoint_add(target, addr, length, hw);
3926  /* error is always logged in breakpoint_add(), do not print it again */
3927  if (ERROR_OK == retval)
3928  command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3929 
3930  } else if (addr == 0) {
3931  if (target->type->add_context_breakpoint == NULL) {
3932  LOG_ERROR("Context breakpoint not available");
3934  }
3935  retval = context_breakpoint_add(target, asid, length, hw);
3936  /* error is always logged in context_breakpoint_add(), do not print it again */
3937  if (ERROR_OK == retval)
3938  command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3939 
3940  } else {
3941  if (target->type->add_hybrid_breakpoint == NULL) {
3942  LOG_ERROR("Hybrid breakpoint not available");
3944  }
3945  retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3946  /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3947  if (ERROR_OK == retval)
3948  command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3949  }
3950  return retval;
3951 }
3952 
3953 COMMAND_HANDLER(handle_bp_command)
3954 {
3956  uint32_t asid;
3957  uint32_t length;
3958  int hw = BKPT_SOFT;
3959 
3960  switch (CMD_ARGC) {
3961  case 0:
3962  return handle_bp_command_list(CMD);
3963 
3964  case 2:
3965  asid = 0;
3966  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3967  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3968  return handle_bp_command_set(CMD, addr, asid, length, hw);
3969 
3970  case 3:
3971  if (strcmp(CMD_ARGV[2], "hw") == 0) {
3972  hw = BKPT_HARD;
3973  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3974  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3975  asid = 0;
3976  return handle_bp_command_set(CMD, addr, asid, length, hw);
3977  } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3978  hw = BKPT_HARD;
3979  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3980  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3981  addr = 0;
3982  return handle_bp_command_set(CMD, addr, asid, length, hw);
3983  }
3984  /* fallthrough */
3985  case 4:
3986  hw = BKPT_HARD;
3987  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3988  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3989  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3990  return handle_bp_command_set(CMD, addr, asid, length, hw);
3991 
3992  default:
3994  }
3995 }
3996 
3997 COMMAND_HANDLER(handle_rbp_command)
3998 {
3999  if (CMD_ARGC != 1)
4001 
4002  struct target *target = get_current_target(CMD_CTX);
4003 
4004  if (!strcmp(CMD_ARGV[0], "all")) {
4005  breakpoint_remove_all(target);
4006  } else {
4008  COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4009 
4010  breakpoint_remove(target, addr);
4011  }
4012 
4013  return ERROR_OK;
4014 }
4015 
4016 COMMAND_HANDLER(handle_wp_command)
4017 {
4018  struct target *target = get_current_target(CMD_CTX);
4019 
4020  if (CMD_ARGC == 0) {
4021  struct watchpoint *watchpoint = target->watchpoints;
4022 
4023  while (watchpoint) {
4024  command_print(CMD, "address: " TARGET_ADDR_FMT
4025  ", len: 0x%8.8" PRIx32
4026  ", r/w/a: %i, value: 0x%8.8" PRIx32
4027  ", mask: 0x%8.8" PRIx32,
4028  watchpoint->address,
4029  watchpoint->length,
4030  (int)watchpoint->rw,
4031  watchpoint->value,
4032  watchpoint->mask);
4033  watchpoint = watchpoint->next;
4034  }
4035  return ERROR_OK;
4036  }
4037 
4038  enum watchpoint_rw type = WPT_ACCESS;
4039  uint32_t addr = 0;
4040  uint32_t length = 0;
4041  uint32_t data_value = 0x0;
4042  uint32_t data_mask = 0xffffffff;
4043 
4044  switch (CMD_ARGC) {
4045  case 5:
4046  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
4047  /* fall through */
4048  case 4:
4049  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
4050  /* fall through */
4051  case 3:
4052  switch (CMD_ARGV[2][0]) {
4053  case 'r':
4054  type = WPT_READ;
4055  break;
4056  case 'w':
4057  type = WPT_WRITE;
4058  break;
4059  case 'a':
4060  type = WPT_ACCESS;
4061  break;
4062  default:
4063  LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
4065  }
4066  /* fall through */
4067  case 2:
4068  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4069  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
4070  break;
4071 
4072  default:
4074  }
4075 
4076  int retval = watchpoint_add(target, addr, length, type,
4077  data_value, data_mask);
4078  if (ERROR_OK != retval)
4079  LOG_ERROR("Failure setting watchpoints");
4080 
4081  return retval;
4082 }
4083 
4084 COMMAND_HANDLER(handle_rwp_command)
4085 {
4086  if (CMD_ARGC != 1)
4088 
4089  uint32_t addr;
4090  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
4091 
4092  struct target *target = get_current_target(CMD_CTX);
4093  watchpoint_remove(target, addr);
4094 
4095  return ERROR_OK;
4096 }
4097 
4104 COMMAND_HANDLER(handle_virt2phys_command)
4105 {
4106  if (CMD_ARGC != 1)
4108 
4109  target_addr_t va;
4111  target_addr_t pa;
4112 
4113  struct target *target = get_current_target(CMD_CTX);
4114  int retval = target->type->virt2phys(target, va, &pa);
4115  if (retval == ERROR_OK)
4116  command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
4117 
4118  return retval;
4119 }
4120 
4121 static void writeData(FILE *f, const void *data, size_t len)
4122 {
4123  size_t written = fwrite(data, 1, len, f);
4124  if (written != len)
4125  LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
4126 }
4127 
4128 static void writeLong(FILE *f, int l, struct target *target)
4129 {
4130  uint8_t val[4];
4131 
4132  target_buffer_set_u32(target, val, l);
4133  writeData(f, val, 4);
4134 }
4135 
4136 static void writeString(FILE *f, char *s)
4137 {
4138  writeData(f, s, strlen(s));
4139 }
4140 
4141 typedef unsigned char UNIT[2]; /* unit of profiling */
4142 
4143 /* Dump a gmon.out histogram file. */
4144 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
4145  uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
4146 {
4147  uint32_t i;
4148  FILE *f = fopen(filename, "w");
4149  if (f == NULL)
4150  return;
4151  writeString(f, "gmon");
4152  writeLong(f, 0x00000001, target); /* Version */
4153  writeLong(f, 0, target); /* padding */
4154  writeLong(f, 0, target); /* padding */
4155  writeLong(f, 0, target); /* padding */
4156 
4157  uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
4158  writeData(f, &zero, 1);
4159 
4160  /* figure out bucket size */
4161  uint32_t min;
4162  uint32_t max;
4163  if (with_range) {
4164  min = start_address;
4165  max = end_address;
4166  } else {
4167  min = samples[0];
4168  max = samples[0];
4169  for (i = 0; i < sampleNum; i++) {
4170  if (min > samples[i])
4171  min = samples[i];
4172  if (max < samples[i])
4173  max = samples[i];
4174  }
4175 
4176  /* max should be (largest sample + 1)
4177  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4178  max++;
4179  }
4180 
4181  int addressSpace = max - min;
4182  assert(addressSpace >= 2);
4183 
4184  /* FIXME: What is the reasonable number of buckets?
4185  * The profiling result will be more accurate if there are enough buckets. */
4186  static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
4187  uint32_t numBuckets = addressSpace / sizeof(UNIT);
4188  if (numBuckets > maxBuckets)
4189  numBuckets = maxBuckets;
4190  int *buckets = malloc(sizeof(int) * numBuckets);
4191  if (buckets == NULL) {
4192  fclose(f);
4193  return;
4194  }
4195  memset(buckets, 0, sizeof(int) * numBuckets);
4196  for (i = 0; i < sampleNum; i++) {
4197  uint32_t address = samples[i];
4198 
4199  if ((address < min) || (max <= address))
4200  continue;
4201 
4202  long long a = address - min;
4203  long long b = numBuckets;
4204  long long c = addressSpace;
4205  int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4206  buckets[index_t]++;
4207  }
4208 
4209  /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4210  writeLong(f, min, target); /* low_pc */
4211  writeLong(f, max, target); /* high_pc */
4212  writeLong(f, numBuckets, target); /* # of buckets */
4213  float sample_rate = sampleNum / (duration_ms / 1000.0);
4214  writeLong(f, sample_rate, target);
4215  writeString(f, "seconds");
4216  for (i = 0; i < (15-strlen("seconds")); i++)
4217  writeData(f, &zero, 1);
4218  writeString(f, "s");
4219 
4220  /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4221 
4222  char *data = malloc(2 * numBuckets);
4223  if (data != NULL) {
4224  for (i = 0; i < numBuckets; i++) {
4225  int val;
4226  val = buckets[i];
4227  if (val > 65535)
4228  val = 65535;
4229  data[i * 2] = val&0xff;
4230  data[i * 2 + 1] = (val >> 8) & 0xff;
4231  }
4232  free(buckets);
4233  writeData(f, data, numBuckets * 2);
4234  free(data);
4235  } else
4236  free(buckets);
4237 
4238  fclose(f);
4239 }
4240 
4241 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4242  * which will be used as a random sampling of PC */
4243 COMMAND_HANDLER(handle_profile_command)
4244 {
4245  struct target *target = get_current_target(CMD_CTX);
4246 
4247  if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4249 
4250  const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4251  uint32_t offset;
4252  uint32_t num_of_samples;
4253  int retval = ERROR_OK;
4254  bool halted_before_profiling = target->state == TARGET_HALTED;
4255 
4256  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4257 
4258  uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4259  if (samples == NULL) {
4260  LOG_ERROR("No memory to store samples.");
4261  return ERROR_FAIL;
4262  }
4263 
4264  uint64_t timestart_ms = timeval_ms();
4270  retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4271  &num_of_samples, offset);
4272  if (retval != ERROR_OK) {
4273  free(samples);
4274  return retval;
4275  }
4276  uint32_t duration_ms = timeval_ms() - timestart_ms;
4277 
4278  assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4279 
4280  retval = target_poll(target);
4281  if (retval != ERROR_OK) {
4282  free(samples);
4283  return retval;
4284  }
4285 
4286  if (target->state == TARGET_RUNNING && halted_before_profiling) {
4287  /* The target was halted before we started and is running now. Halt it,
4288  * for consistency. */
4289  retval = target_halt(target);
4290  if (retval != ERROR_OK) {
4291  free(samples);
4292  return retval;
4293  }
4294  } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4295  /* The target was running before we started and is halted now. Resume
4296  * it, for consistency. */
4297  retval = target_resume(target, 1, 0, 0, 0);
4298  if (retval != ERROR_OK) {
4299  free(samples);
4300  return retval;
4301  }
4302  }
4303 
4304  retval = target_poll(target);
4305  if (retval != ERROR_OK) {
4306  free(samples);
4307  return retval;
4308  }
4309 
4310  uint32_t start_address = 0;
4311  uint32_t end_address = 0;
4312  bool with_range = false;
4313  if (CMD_ARGC == 4) {
4314  with_range = true;
4315  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4316  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4317  }
4318 
4319  write_gmon(samples, num_of_samples, CMD_ARGV[1],
4320  with_range, start_address, end_address, target, duration_ms);
4321  command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4322 
4323  free(samples);
4324  return retval;
4325 }
4326 
4327 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4328 {
4329  char *namebuf;
4330  Jim_Obj *nameObjPtr, *valObjPtr;
4331  int result;
4332 
4333  namebuf = alloc_printf("%s(%d)", varname, idx);
4334  if (!namebuf)
4335  return JIM_ERR;
4336 
4337  nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4338  valObjPtr = Jim_NewIntObj(interp, val);
4339  if (!nameObjPtr || !valObjPtr) {
4340  free(namebuf);
4341  return JIM_ERR;
4342  }
4343 
4344  Jim_IncrRefCount(nameObjPtr);
4345  Jim_IncrRefCount(valObjPtr);
4346  result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4347  Jim_DecrRefCount(interp, nameObjPtr);
4348  Jim_DecrRefCount(interp, valObjPtr);
4349  free(namebuf);
4350  /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4351  return result;
4352 }
4353 
4354 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4355 {
4356  struct command_context *context;
4357  struct target *target;
4358 
4359  context = current_command_context(interp);
4360  assert(context != NULL);
4361 
4362  target = get_current_target(context);
4363  if (target == NULL) {
4364  LOG_ERROR("mem2array: no current target");
4365  return JIM_ERR;
4366  }
4367 
4368  return target_mem2array(interp, target, argc - 1, argv + 1);
4369 }
4370 
4371 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4372 {
4373  long l;
4374  uint32_t width;
4375  int len;
4376  uint32_t addr;
4377  uint32_t count;
4378  uint32_t v;
4379  const char *varname;
4380  const char *phys;
4381  bool is_phys;
4382  int n, e, retval;
4383  uint32_t i;
4384 
4385  /* argv[1] = name of array to receive the data
4386  * argv[2] = desired width
4387  * argv[3] = memory address
4388  * argv[4] = count of times to read
4389  */
4390 
4391  if (argc < 4 || argc > 5) {
4392  Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4393  return JIM_ERR;
4394  }
4395  varname = Jim_GetString(argv[0], &len);
4396  /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4397 
4398  e = Jim_GetLong(interp, argv[1], &l);
4399  width = l;
4400  if (e != JIM_OK)
4401  return e;
4402 
4403  e = Jim_GetLong(interp, argv[2], &l);
4404  addr = l;
4405  if (e != JIM_OK)
4406  return e;
4407  e = Jim_GetLong(interp, argv[3], &l);
4408  len = l;
4409  if (e != JIM_OK)
4410  return e;
4411  is_phys = false;
4412  if (argc > 4) {
4413  phys = Jim_GetString(argv[4], &n);
4414  if (!strncmp(phys, "phys", n))
4415  is_phys = true;
4416  else
4417  return JIM_ERR;
4418  }
4419  switch (width) {
4420  case 8:
4421  width = 1;
4422  break;
4423  case 16:
4424  width = 2;
4425  break;
4426  case 32:
4427  width = 4;
4428  break;
4429  default:
4430  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4431  Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4432  return JIM_ERR;
4433  }
4434  if (len == 0) {
4435  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4436  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4437  return JIM_ERR;
4438  }
4439  if ((addr + (len * width)) < addr) {
4440  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4441  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4442  return JIM_ERR;
4443  }
4444  /* absurd transfer size? */
4445  if (len > 65536) {
4446  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4447  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4448  return JIM_ERR;
4449  }
4450 
4451  if ((width == 1) ||
4452  ((width == 2) && ((addr & 1) == 0)) ||
4453  ((width == 4) && ((addr & 3) == 0))) {
4454  /* all is well */
4455  } else {
4456  char buf[100];
4457  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4458  sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4459  addr,
4460  width);
4461  Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4462  return JIM_ERR;
4463  }
4464 
4465  /* Transfer loop */
4466 
4467  /* index counter */
4468  n = 0;
4469 
4470  size_t buffersize = 4096;
4471  uint8_t *buffer = malloc(buffersize);
4472  if (buffer == NULL)
4473  return JIM_ERR;
4474 
4475  /* assume ok */
4476  e = JIM_OK;
4477  while (len) {
4478  /* Slurp... in buffer size chunks */
4479 
4480  count = len; /* in objects.. */
4481  if (count > (buffersize / width))
4482  count = (buffersize / width);
4483 
4484  if (is_phys)
4485  retval = target_read_phys_memory(target, addr, width, count, buffer);
4486  else
4487  retval = target_read_memory(target, addr, width, count, buffer);
4488  if (retval != ERROR_OK) {
4489  /* BOO !*/
4490  LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4491  addr,
4492  width,
4493  count);
4494  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4495  Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4496  e = JIM_ERR;
4497  break;
4498  } else {
4499  v = 0; /* shut up gcc */
4500  for (i = 0; i < count ; i++, n++) {
4501  switch (width) {
4502  case 4:
4503  v = target_buffer_get_u32(target, &buffer[i*width]);
4504  break;
4505  case 2:
4506  v = target_buffer_get_u16(target, &buffer[i*width]);
4507  break;
4508  case 1:
4509  v = buffer[i] & 0x0ff;
4510  break;
4511  }
4512  new_int_array_element(interp, varname, n, v);
4513  }
4514  len -= count;
4515  addr += count * width;
4516  }
4517  }
4518 
4519  free(buffer);
4520 
4521  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4522 
4523  return e;
4524 }
4525 
4526 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4527 {
4528  char *namebuf;
4529  Jim_Obj *nameObjPtr, *valObjPtr;
4530  int result;
4531  long l;
4532 
4533  namebuf = alloc_printf("%s(%d)", varname, idx);
4534  if (!namebuf)
4535  return JIM_ERR;
4536 
4537  nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4538  if (!nameObjPtr) {
4539  free(namebuf);
4540  return JIM_ERR;
4541  }
4542 
4543  Jim_IncrRefCount(nameObjPtr);
4544  valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4545  Jim_DecrRefCount(interp, nameObjPtr);
4546  free(namebuf);
4547  if (valObjPtr == NULL)
4548  return JIM_ERR;
4549 
4550  result = Jim_GetLong(interp, valObjPtr, &l);
4551  /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4552  *val = l;
4553  return result;
4554 }
4555 
4556 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4557 {
4558  struct command_context *context;
4559  struct target *target;
4560 
4561  context = current_command_context(interp);
4562  assert(context != NULL);
4563 
4564  target = get_current_target(context);
4565  if (target == NULL) {
4566  LOG_ERROR("array2mem: no current target");
4567  return JIM_ERR;
4568  }
4569 
4570  return target_array2mem(interp, target, argc-1, argv + 1);
4571 }
4572 
4573 static int target_array2mem(Jim_Interp *interp, struct target *target,
4574  int argc, Jim_Obj *const *argv)
4575 {
4576  long l;
4577  uint32_t width;
4578  int len;
4579  uint32_t addr;
4580  uint32_t count;
4581  uint32_t v;
4582  const char *varname;
4583  const char *phys;
4584  bool is_phys;
4585  int n, e, retval;
4586  uint32_t i;
4587 
4588  /* argv[1] = name of array to get the data
4589  * argv[2] = desired width
4590  * argv[3] = memory address
4591  * argv[4] = count to write
4592  */
4593  if (argc < 4 || argc > 5) {
4594  Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4595  return JIM_ERR;
4596  }
4597  varname = Jim_GetString(argv[0], &len);
4598  /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4599 
4600  e = Jim_GetLong(interp, argv[1], &l);
4601  width = l;
4602  if (e != JIM_OK)
4603  return e;
4604 
4605  e = Jim_GetLong(interp, argv[2], &l);
4606  addr = l;
4607  if (e != JIM_OK)
4608  return e;
4609  e = Jim_GetLong(interp, argv[3], &l);
4610  len = l;
4611  if (e != JIM_OK)
4612  return e;
4613  is_phys = false;
4614  if (argc > 4) {
4615  phys = Jim_GetString(argv[4], &n);
4616  if (!strncmp(phys, "phys", n))
4617  is_phys = true;
4618  else
4619  return JIM_ERR;
4620  }
4621  switch (width) {
4622  case 8:
4623  width = 1;
4624  break;
4625  case 16:
4626  width = 2;
4627  break;
4628  case 32:
4629  width = 4;
4630  break;
4631  default:
4632  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4633  Jim_AppendStrings(interp, Jim_GetResult(interp),
4634  "Invalid width param, must be 8/16/32", NULL);
4635  return JIM_ERR;
4636  }
4637  if (len == 0) {
4638  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4639  Jim_AppendStrings(interp, Jim_GetResult(interp),
4640  "array2mem: zero width read?", NULL);
4641  return JIM_ERR;
4642  }
4643  if ((addr + (len * width)) < addr) {
4644  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4645  Jim_AppendStrings(interp, Jim_GetResult(interp),
4646  "array2mem: addr + len - wraps to zero?", NULL);
4647  return JIM_ERR;
4648  }
4649  /* absurd transfer size? */
4650  if (len > 65536) {
4651  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4652  Jim_AppendStrings(interp, Jim_GetResult(interp),
4653  "array2mem: absurd > 64K item request", NULL);
4654  return JIM_ERR;
4655  }
4656 
4657  if ((width == 1) ||
4658  ((width == 2) && ((addr & 1) == 0)) ||
4659  ((width == 4) && ((addr & 3) == 0))) {
4660  /* all is well */
4661  } else {
4662  char buf[100];
4663  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4664  sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4665  addr,
4666  width);
4667  Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4668  return JIM_ERR;
4669  }
4670 
4671  /* Transfer loop */
4672 
4673  /* index counter */
4674  n = 0;
4675  /* assume ok */
4676  e = JIM_OK;
4677 
4678  size_t buffersize = 4096;
4679  uint8_t *buffer = malloc(buffersize);
4680  if (buffer == NULL)
4681  return JIM_ERR;
4682 
4683  while (len) {
4684  /* Slurp... in buffer size chunks */
4685 
4686  count = len; /* in objects.. */
4687  if (count > (buffersize / width))
4688  count = (buffersize / width);
4689 
4690  v = 0; /* shut up gcc */
4691  for (i = 0; i < count; i++, n++) {
4692  get_int_array_element(interp, varname, n, &v);
4693  switch (width) {
4694  case 4:
4695  target_buffer_set_u32(target, &buffer[i * width], v);
4696  break;
4697  case 2:
4698  target_buffer_set_u16(target, &buffer[i * width], v);
4699  break;
4700  case 1:
4701  buffer[i] = v & 0x0ff;
4702  break;
4703  }
4704  }
4705  len -= count;
4706 
4707  if (is_phys)
4708  retval = target_write_phys_memory(target, addr, width, count, buffer);
4709  else
4710  retval = target_write_memory(target, addr, width, count, buffer);
4711  if (retval != ERROR_OK) {
4712  /* BOO !*/
4713  LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4714  addr,
4715  width,
4716  count);
4717  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4718  Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4719  e = JIM_ERR;
4720  break;
4721  }
4722  addr += count * width;
4723  }
4724 
4725  free(buffer);
4726 
4727  Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4728 
4729  return e;
4730 }
4731 
4732 /* FIX? should we propagate errors here rather than printing them
4733  * and continuing?
4734  */
4735 void target_handle_event(struct target *target, enum target_event e)
4736 {
4737  struct target_event_action *teap;
4738  int retval;
4739 
4740  for (teap = target->event_action; teap != NULL; teap = teap->next) {
4741  if (teap->event == e) {
4742  LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4743  target->target_number,
4744  target_name(target),
4745  target_type_name(target),
4746  e,
4747  Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4748  Jim_GetString(teap->body, NULL));
4749 
4750  /* Override current target by the target an event
4751  * is issued from (lot of scripts need it).
4752  * Return back to previous override as soon
4753  * as the handler processing is done */
4754  struct command_context *cmd_ctx = current_command_context(teap->interp);
4755  struct target *saved_target_override = cmd_ctx->current_target_override;
4756  cmd_ctx->current_target_override = target;
4757 
4758  retval = Jim_EvalObj(teap->interp, teap->body);
4759 
4760  cmd_ctx->current_target_override = saved_target_override;
4761 
4762  if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4763  return;
4764 
4765  if (retval == JIM_RETURN)
4766  retval = teap->interp->returnCode;
4767 
4768  if (retval != JIM_OK) {
4769  Jim_MakeErrorMessage(teap->interp);
4770  LOG_USER("Error executing event %s on target %s:\n%s",
4771  Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4772  target_name(target),
4773  Jim_GetString(Jim_GetResult(teap->interp), NULL));
4774  /* clean both error code and stacktrace before return */
4775  Jim_Eval(teap->interp, "error \"\" \"\"");
4776  }
4777  }
4778  }
4779 }
4780 
4784 bool target_has_event_action(struct target *target, enum target_event event)
4785 {
4786  struct target_event_action *teap;
4787 
4788  for (teap = target->event_action; teap != NULL; teap = teap->next) {
4789  if (teap->event == event)
4790  return true;
4791  }
4792  return false;
4793 }
4794 
4810 };
4811 
4813  { .name = "-type", .value = TCFG_TYPE },
4814  { .name = "-event", .value = TCFG_EVENT },
4815  { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4816  { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4817  { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4818  { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4819  { .name = "-endian", .value = TCFG_ENDIAN },
4820  { .name = "-coreid", .value = TCFG_COREID },
4821  { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4822  { .name = "-dbgbase", .value = TCFG_DBGBASE },
4823  { .name = "-rtos", .value = TCFG_RTOS },
4824  { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4825  { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4826  { .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
4827  { .name = NULL, .value = -1 }
4828 };
4829 
4830 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4831 {
4832  Jim_Nvp *n;
4833  Jim_Obj *o;
4834  jim_wide w;
4835  int e;
4836 
4837  /* parse config or cget options ... */
4838  while (goi->argc > 0) {
4839  Jim_SetEmptyResult(goi->interp);
4840  /* Jim_GetOpt_Debug(goi); */
4841 
4842  if (target->type->target_jim_configure) {
4843  /* target defines a configure function */
4844  /* target gets first dibs on parameters */
4845  e = (*(target->type->target_jim_configure))(target, goi);
4846  if (e == JIM_OK) {
4847  /* more? */
4848  continue;
4849  }
4850  if (e == JIM_ERR) {
4851  /* An error */
4852  return e;
4853  }
4854  /* otherwise we 'continue' below */
4855  }
4856  e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4857  if (e != JIM_OK) {
4858  Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4859  return e;
4860  }
4861  switch (n->value) {
4862  case TCFG_TYPE:
4863  /* not settable */
4864  if (goi->isconfigure) {
4865  Jim_SetResultFormatted(goi->interp,
4866  "not settable: %s", n->name);
4867  return JIM_ERR;
4868  } else {
4869 no_params:
4870  if (goi->argc != 0) {
4871  Jim_WrongNumArgs(goi->interp,
4872  goi->argc, goi->argv,
4873  "NO PARAMS");
4874  return JIM_ERR;
4875  }
4876  }
4877  Jim_SetResultString(goi->interp,
4878  target_type_name(target), -1);
4879  /* loop for more */
4880  break;
4881  case TCFG_EVENT:
4882  if (goi->argc == 0) {
4883  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4884  return JIM_ERR;
4885  }
4886 
4887  e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4888  if (e != JIM_OK) {
4889  Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4890  return e;
4891  }
4892 
4893  if (goi->isconfigure) {
4894  if (goi->argc != 1) {
4895  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4896  return JIM_ERR;
4897  }
4898  } else {
4899  if (goi->argc != 0) {
4900  Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4901  return JIM_ERR;
4902  }
4903  }
4904 
4905  {
4906  struct target_event_action *teap;
4907 
4908  teap = target->event_action;
4909  /* replace existing? */
4910  while (teap) {
4911  if (teap->event == (enum target_event)n->value)
4912  break;
4913  teap = teap->next;
4914  }
4915 
4916  if (goi->isconfigure) {
4917  bool replace = true;
4918  if (teap == NULL) {
4919  /* create new */
4920  teap = calloc(1, sizeof(*teap));
4921  replace = false;
4922  }
4923  teap->event = n->value;
4924  teap->interp = goi->interp;
4925  Jim_GetOpt_Obj(goi, &o);
4926  if (teap->body)
4927  Jim_DecrRefCount(teap->interp, teap->body);
4928  teap->body = Jim_DuplicateObj(goi->interp, o);
4929  /*
4930  * FIXME:
4931  * Tcl/TK - "tk events" have a nice feature.
4932  * See the "BIND" command.
4933  * We should support that here.
4934  * You can specify %X and %Y in the event code.
4935  * The idea is: %T - target name.
4936  * The idea is: %N - target number
4937  * The idea is: %E - event name.
4938  */
4939  Jim_IncrRefCount(teap->body);
4940 
4941  if (!replace) {
4942  /* add to head of event list */
4943  teap->next = target->event_action;
4944  target->event_action = teap;
4945  }
4946  Jim_SetEmptyResult(goi->interp);
4947  } else {
4948  /* get */
4949  if (teap == NULL)
4950  Jim_SetEmptyResult(goi->interp);
4951  else
4952  Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4953  }
4954  }
4955  /* loop for more */
4956  break;
4957 
4958  case TCFG_WORK_AREA_VIRT:
4959  if (goi->isconfigure) {
4961  e = Jim_GetOpt_Wide(goi, &w);
4962  if (e != JIM_OK)
4963  return e;
4964  target->working_area_virt = w;
4965  target->working_area_virt_spec = true;
4966  } else {
4967  if (goi->argc != 0)
4968  goto no_params;
4969  }
4970  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4971  /* loop for more */
4972  break;
4973 
4974  case TCFG_WORK_AREA_PHYS:
4975  if (goi->isconfigure) {
4977  e = Jim_GetOpt_Wide(goi, &w);
4978  if (e != JIM_OK)
4979  return e;
4980  target->working_area_phys = w;
4981  target->working_area_phys_spec = true;
4982  } else {
4983  if (goi->argc != 0)
4984  goto no_params;
4985  }
4986  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4987  /* loop for more */
4988  break;
4989 
4990  case TCFG_WORK_AREA_SIZE:
4991  if (goi->isconfigure) {
4993  e = Jim_GetOpt_Wide(goi, &w);
4994  if (e != JIM_OK)
4995  return e;
4996  target->working_area_size = w;
4997  } else {
4998  if (goi->argc != 0)
4999  goto no_params;
5000  }
5001  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
5002  /* loop for more */
5003  break;
5004 
5005  case TCFG_WORK_AREA_BACKUP:
5006  if (goi->isconfigure) {
5008  e = Jim_GetOpt_Wide(goi, &w);
5009  if (e != JIM_OK)
5010  return e;
5011  /* make this exactly 1 or 0 */
5012  target->backup_working_area = (!!w);
5013  } else {
5014  if (goi->argc != 0)
5015  goto no_params;
5016  }
5017  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
5018  /* loop for more e*/
5019  break;
5020 
5021 
5022  case TCFG_ENDIAN:
5023  if (goi->isconfigure) {
5024  e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
5025  if (e != JIM_OK) {
5026  Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
5027  return e;
5028  }
5029  target->endianness = n->value;
5030  } else {
5031  if (goi->argc != 0)
5032  goto no_params;
5033  }
5034  n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
5035  if (n->name == NULL) {
5036  target->endianness = TARGET_LITTLE_ENDIAN;
5037  n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
5038  }
5039  Jim_SetResultString(goi->interp, n->name, -1);
5040  /* loop for more */
5041  break;
5042 
5043  case TCFG_COREID:
5044  if (goi->isconfigure) {
5045  e = Jim_GetOpt_Wide(goi, &w);
5046  if (e != JIM_OK)
5047  return e;
5048  target->coreid = (int32_t)w;
5049  } else {
5050  if (goi->argc != 0)
5051  goto no_params;
5052  }
5053  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
5054  /* loop for more */
5055  break;
5056 
5057  case TCFG_CHAIN_POSITION:
5058  if (goi->isconfigure) {
5059  Jim_Obj *o_t;
5060  struct jtag_tap *tap;
5061 
5062  if (target->has_dap) {
5063  Jim_SetResultString(goi->interp,
5064  "target requires -dap parameter instead of -chain-position!", -1);
5065  return JIM_ERR;
5066  }
5067 
5069  e = Jim_GetOpt_Obj(goi, &o_t);
5070  if (e != JIM_OK)
5071  return e;
5072  tap = jtag_tap_by_jim_obj(goi->interp, o_t);
5073  if (tap == NULL)
5074  return JIM_ERR;
5075  target->tap = tap;
5076  target->tap_configured = true;
5077  } else {
5078  if (goi->argc != 0)
5079  goto no_params;
5080  }
5081  Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
5082  /* loop for more e*/
5083  break;
5084  case TCFG_DBGBASE:
5085  if (goi->isconfigure) {
5086  e = Jim_GetOpt_Wide(goi, &w);
5087  if (e != JIM_OK)
5088  return e;
5089  target->dbgbase = (uint32_t)w;
5090  target->dbgbase_set = true;
5091  } else {
5092  if (goi->argc != 0)
5093  goto no_params;
5094  }
5095  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
5096  /* loop for more */
5097  break;
5098  case TCFG_RTOS:
5099  /* RTOS */
5100  {
5101  int result = rtos_create(goi, target);
5102  if (result != JIM_OK)
5103  return result;
5104  }
5105  /* loop for more */
5106  break;
5107 
5108  case TCFG_DEFER_EXAMINE:
5109  /* DEFER_EXAMINE */
5110  target->defer_examine = true;
5111  /* loop for more */
5112  break;
5113 
5114  case TCFG_GDB_PORT:
5115  if (goi->isconfigure) {
5116  struct command_context *cmd_ctx = current_command_context(goi->interp);
5117  if (cmd_ctx->mode != COMMAND_CONFIG) {
5118  Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
5119  return JIM_ERR;
5120  }
5121 
5122  const char *s;
5123  e = Jim_GetOpt_String(goi, &s, NULL);
5124  if (e != JIM_OK)
5125  return e;
5126  target->gdb_port_override = strdup(s);
5127  } else {
5128  if (goi->argc != 0)
5129  goto no_params;
5130  }
5131  Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
5132  /* loop for more */
5133  break;
5134 
5136  if (goi->isconfigure) {
5137  struct command_context *cmd_ctx = current_command_context(goi->interp);
5138  if (cmd_ctx->mode != COMMAND_CONFIG) {
5139  Jim_SetResultString(goi->interp, "-gdb-max-conenctions must be configured before 'init'", -1);
5140  return JIM_ERR;
5141  }
5142 
5143  e = Jim_GetOpt_Wide(goi, &w);
5144  if (e != JIM_OK)
5145  return e;
5146  target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
5147  } else {
5148  if (goi->argc != 0)
5149  goto no_params;
5150  }
5151  Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
5152  break;
5153  }
5154  } /* while (goi->argc) */
5155 
5156 
5157  /* done - we return */
5158  return JIM_OK;
5159 }
5160 
5161 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5162 {
5163  Jim_GetOptInfo goi;
5164 
5165  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5166  goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
5167  if (goi.argc < 1) {
5168  Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5169  "missing: -option ...");
5170  return JIM_ERR;
5171  }
5172  struct target *target = Jim_CmdPrivData(goi.interp);
5173  return target_configure(&goi, target);
5174 }
5175 
5176 static int jim_target_mem2array(Jim_Interp *interp,
5177  int argc, Jim_Obj *const *argv)
5178 {
5179  struct target *target = Jim_CmdPrivData(interp);
5180  return target_mem2array(interp, target, argc - 1, argv + 1);
5181 }
5182 
5183 static int jim_target_array2mem(Jim_Interp *interp,
5184  int argc, Jim_Obj *const *argv)
5185 {
5186  struct target *target = Jim_CmdPrivData(interp);
5187  return target_array2mem(interp, target, argc - 1, argv + 1);
5188 }
5189 
5190 static int jim_target_tap_disabled(Jim_Interp *interp)
5191 {
5192  Jim_SetResultFormatted(interp, "[TAP is disabled]");
5193  return JIM_ERR;
5194 }
5195 
5196 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5197 {
5198  bool allow_defer = false;
5199 
5200  Jim_GetOptInfo goi;
5201  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5202  if (goi.argc > 1) {
5203  const char *cmd_name = Jim_GetString(argv[0], NULL);
5204  Jim_SetResultFormatted(goi.interp,
5205  "usage: %s ['allow-defer']", cmd_name);
5206  return JIM_ERR;
5207  }
5208  if (goi.argc > 0 &&
5209  strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5210  /* consume it */
5211  Jim_Obj *obj;
5212  int e = Jim_GetOpt_Obj(&goi, &obj);
5213  if (e != JIM_OK)
5214  return e;
5215  allow_defer = true;
5216  }
5217 
5218  struct target *target = Jim_CmdPrivData(interp);
5219  if (!target->tap->enabled)
5220  return jim_target_tap_disabled(interp);
5221 
5222  if (allow_defer && target->defer_examine) {
5223  LOG_INFO("Deferring arp_examine of %s", target_name(target));
5224  LOG_INFO("Use arp_examine command to examine it manually!");
5225  return JIM_OK;
5226  }
5227 
5228  int e = target->type->examine(target);
5229  if (e != ERROR_OK)
5230  return JIM_ERR;
5231  return JIM_OK;
5232 }
5233 
5234 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5235 {
5236  struct target *target = Jim_CmdPrivData(interp);
5237 
5238  Jim_SetResultBool(interp, target_was_examined(target));
5239  return JIM_OK;
5240 }
5241 
5242 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5243 {
5244  struct target *target = Jim_CmdPrivData(interp);
5245 
5246  Jim_SetResultBool(interp, target->defer_examine);
5247  return JIM_OK;
5248 }
5249 
5250 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5251 {
5252  if (argc != 1) {
5253  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5254  return JIM_ERR;
5255  }
5256  struct target *target = Jim_CmdPrivData(interp);
5257 
5259  return JIM_ERR;
5260 
5261  return JIM_OK;
5262 }
5263 
5264 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5265 {
5266  if (argc != 1) {
5267  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5268  return JIM_ERR;
5269  }
5270  struct target *target = Jim_CmdPrivData(interp);
5271  if (!target->tap->enabled)
5272  return jim_target_tap_disabled(interp);
5273 
5274  int e;
5275  if (!(target_was_examined(target)))
5277  else
5278  e = target->type->poll(target);
5279  if (e != ERROR_OK)
5280  return JIM_ERR;
5281  return JIM_OK;
5282 }
5283 
5284 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5285 {
5286  Jim_GetOptInfo goi;
5287  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5288 
5289  if (goi.argc != 2) {
5290  Jim_WrongNumArgs(interp, 0, argv,
5291  "([tT]|[fF]|assert|deassert) BOOL");
5292  return JIM_ERR;
5293  }
5294 
5295  Jim_Nvp *n;
5296  int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5297  if (e != JIM_OK) {
5298  Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5299  return e;
5300  }
5301  /* the halt or not param */
5302  jim_wide a;
5303  e = Jim_GetOpt_Wide(&goi, &a);
5304  if (e != JIM_OK)
5305  return e;
5306 
5307  struct target *target = Jim_CmdPrivData(goi.interp);
5308  if (!target->tap->enabled)
5309  return jim_target_tap_disabled(interp);
5310 
5311  if (!target->type->assert_reset || !target->type->deassert_reset) {
5312  Jim_SetResultFormatted(interp,
5313  "No target-specific reset for %s",
5314  target_name(target));
5315  return JIM_ERR;
5316  }
5317 
5318  if (target->defer_examine)
5319  target_reset_examined(target);
5320 
5321  /* determine if we should halt or not. */
5322  target->reset_halt = !!a;
5323  /* When this happens - all workareas are invalid. */
5325 
5326  /* do the assert */
5327  if (n->value == NVP_ASSERT)
5328  e = target->type->assert_reset(target);
5329  else
5330  e = target->type->deassert_reset(target);
5331  return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5332 }
5333 
5334 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5335 {
5336  if (argc != 1) {
5337  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5338  return JIM_ERR;
5339  }
5340  struct target *target = Jim_CmdPrivData(interp);
5341  if (!target->tap->enabled)
5342  return jim_target_tap_disabled(interp);
5343  int e = target->type->halt(target);
5344  return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5345 }
5346 
5347 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5348 {
5349  Jim_GetOptInfo goi;
5350  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5351 
5352  /* params: <name> statename timeoutmsecs */
5353  if (goi.argc != 2) {
5354  const char *cmd_name = Jim_GetString(argv[0], NULL);
5355  Jim_SetResultFormatted(goi.interp,
5356  "%s <state_name> <timeout_in_msec>", cmd_name);
5357  return JIM_ERR;
5358  }
5359 
5360  Jim_Nvp *n;
5361  int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5362  if (e != JIM_OK) {
5363  Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5364  return e;
5365  }
5366  jim_wide a;
5367  e = Jim_GetOpt_Wide(&goi, &a);
5368  if (e != JIM_OK)
5369  return e;
5370  struct target *target = Jim_CmdPrivData(interp);
5371  if (!target->tap->enabled)
5372  return jim_target_tap_disabled(interp);
5373 
5374  e = target_wait_state(target, n->value, a);
5375  if (e != ERROR_OK) {
5376  Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5377  Jim_SetResultFormatted(goi.interp,
5378  "target: %s wait %s fails (%#s) %s",
5379  target_name(target), n->name,
5380  eObj, target_strerror_safe(e));
5381  return JIM_ERR;
5382  }
5383  return JIM_OK;
5384 }
5385 /* List for human, Events defined for this target.
5386  * scripts/programs should use 'name cget -event NAME'
5387  */
5388 COMMAND_HANDLER(handle_target_event_list)
5389 {
5390  struct target *target = get_current_target(CMD_CTX);
5391  struct target_event_action *teap = target->event_action;
5392 
5393  command_print(CMD, "Event actions for target (%d) %s\n",
5394  target->target_number,
5395  target_name(target));
5396  command_print(CMD, "%-25s | Body", "Event");
5397  command_print(CMD, "------------------------- | "
5398  "----------------------------------------");
5399  while (teap) {
5400  Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5401  command_print(CMD, "%-25s | %s",
5402  opt->name, Jim_GetString(teap->body, NULL));
5403  teap = teap->next;
5404  }
5405  command_print(CMD, "***END***");
5406  return ERROR_OK;
5407 }
5408 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5409 {
5410  if (argc != 1) {
5411  Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5412  return JIM_ERR;
5413  }
5414  struct target *target = Jim_CmdPrivData(interp);
5415  Jim_SetResultString(interp, target_state_name(target), -1);
5416  return JIM_OK;
5417 }
5418 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5419 {
5420  Jim_GetOptInfo goi;
5421  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5422  if (goi.argc != 1) {
5423  const char *cmd_name = Jim_GetString(argv[0], NULL);
5424  Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5425  return JIM_ERR;
5426  }
5427  Jim_Nvp *n;
5428  int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5429  if (e != JIM_OK) {
5430  Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5431  return e;
5432  }
5433  struct target *target = Jim_CmdPrivData(interp);
5434  target_handle_event(target, n->value);
5435  return JIM_OK;
5436 }
5437 
5439  {
5440  .name = "configure",
5441  .mode = COMMAND_ANY,
5442  .jim_handler = jim_target_configure,
5443  .help = "configure a new target for use",
5444  .usage = "[target_attribute ...]",
5445  },
5446  {
5447  .name = "cget",
5448  .mode = COMMAND_ANY,
5449  .jim_handler = jim_target_configure,
5450  .help = "returns the specified target attribute",
5451  .usage = "target_attribute",
5452  },
5453  {
5454  .name = "mwd",
5455  .handler = handle_mw_command,
5456  .mode = COMMAND_EXEC,
5457  .help = "Write 64-bit word(s) to target memory",
5458  .usage = "address data [count]",
5459  },
5460  {
5461  .name = "mww",
5462  .handler = handle_mw_command,
5463  .mode = COMMAND_EXEC,
5464  .help = "Write 32-bit word(s) to target memory",
5465  .usage = "address data [count]",
5466  },
5467  {
5468  .name = "mwh",
5469  .handler = handle_mw_command,
5470  .mode = COMMAND_EXEC,
5471  .help = "Write 16-bit half-word(s) to target memory",
5472  .usage = "address data [count]",
5473  },
5474  {
5475  .name = "mwb",
5476  .handler = handle_mw_command,
5477  .mode = COMMAND_EXEC,
5478  .help = "Write byte(s) to target memory",
5479  .usage = "address data [count]",
5480  },
5481  {
5482  .name = "mdd",
5483  .handler = handle_md_command,
5484  .mode = COMMAND_EXEC,
5485  .help = "Display target memory as 64-bit words",
5486  .usage = "address [count]",
5487  },
5488  {
5489  .name = "mdw",
5490  .handler = handle_md_command,
5491  .mode = COMMAND_EXEC,
5492  .help = "Display target memory as 32-bit words",
5493  .usage = "address [count]",
5494  },
5495  {
5496  .name = "mdh",
5497  .handler = handle_md_command,
5498  .mode = COMMAND_EXEC,
5499  .help = "Display target memory as 16-bit half-words",
5500  .usage = "address [count]",
5501  },
5502  {
5503  .name = "mdb",
5504  .handler = handle_md_command,
5505  .mode = COMMAND_EXEC,
5506  .help = "Display target memory as 8-bit bytes",
5507  .usage = "address [count]",
5508  },
5509  {
5510  .name = "array2mem",
5511  .mode = COMMAND_EXEC,
5512  .jim_handler = jim_target_array2mem,
5513  .help = "Writes Tcl array of 8/16/32 bit numbers "
5514  "to target memory",
5515  .usage = "arrayname bitwidth address count",
5516  },
5517  {
5518  .name = "mem2array",
5519  .mode = COMMAND_EXEC,
5520  .jim_handler = jim_target_mem2array,
5521  .help = "Loads Tcl array of 8/16/32 bit numbers "
5522  "from target memory",
5523  .usage = "arrayname bitwidth address count",
5524  },
5525  {
5526  .name = "eventlist",
5527  .handler = handle_target_event_list,
5528  .mode = COMMAND_EXEC,
5529  .help = "displays a table of events defined for this target",
5530  .usage = "",
5531  },
5532  {
5533  .name = "curstate",
5534  .mode = COMMAND_EXEC,
5535  .jim_handler = jim_target_current_state,
5536  .help = "displays the current state of this target",
5537  },
5538  {
5539  .name = "arp_examine",
5540  .mode = COMMAND_EXEC,
5541  .jim_handler = jim_target_examine,
5542  .help = "used internally for reset processing",
5543  .usage = "['allow-defer']",
5544  },
5545  {
5546  .name = "was_examined",
5547  .mode = COMMAND_EXEC,
5548  .jim_handler = jim_target_was_examined,
5549  .help = "used internally for reset processing",
5550  },
5551  {
5552  .name = "examine_deferred",
5553  .mode = COMMAND_EXEC,
5554  .jim_handler = jim_target_examine_deferred,
5555  .help = "used internally for reset processing",
5556  },
5557  {
5558  .name = "arp_halt_gdb",
5559  .mode = COMMAND_EXEC,
5560  .jim_handler = jim_target_halt_gdb,
5561  .help = "used internally for reset processing to halt GDB",
5562  },
5563  {
5564  .name = "arp_poll",
5565  .mode = COMMAND_EXEC,
5566  .jim_handler = jim_target_poll,
5567  .help = "used internally for reset processing",
5568  },
5569  {
5570  .name = "arp_reset",
5571  .mode = COMMAND_EXEC,
5572  .jim_handler = jim_target_reset,
5573  .help = "used internally for reset processing",
5574  },
5575  {
5576  .name = "arp_halt",
5577  .mode = COMMAND_EXEC,
5578  .jim_handler = jim_target_halt,
5579  .help = "used internally for reset processing",
5580  },
5581  {
5582  .name = "arp_waitstate",
5583  .mode = COMMAND_EXEC,
5584  .jim_handler = jim_target_wait_state,
5585  .help = "used internally for reset processing",
5586  },
5587  {
5588  .name = "invoke-event",
5589  .mode = COMMAND_EXEC,
5590  .jim_handler = jim_target_invoke_event,
5591  .help = "invoke handler for specified event",
5592  .usage = "event_name",
5593  },
5595 };
5596 
5598 {
5599  Jim_Obj *new_cmd;
5600  Jim_Cmd *cmd;
5601  const char *cp;
5602  int e;
5603  int x;
5604  struct target *target;
5605  struct command_context *cmd_ctx;
5606 
5607  cmd_ctx = current_command_context(goi->interp);
5608  assert(cmd_ctx != NULL);
5609 
5610  if (goi->argc < 3) {
5611  Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5612  return JIM_ERR;
5613  }
5614 
5615  /* COMMAND */
5616  Jim_GetOpt_Obj(goi, &new_cmd);
5617  /* does this command exist? */
5618  cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5619  if (cmd) {
5620  cp = Jim_GetString(new_cmd, NULL);
5621  Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5622  return JIM_ERR;
5623  }
5624 
5625  /* TYPE */
5626  e = Jim_GetOpt_String(goi, &cp, NULL);
5627  if (e != JIM_OK)
5628  return e;
5629  struct transport *tr = get_current_transport();
5630  if (tr->override_target) {
5631  e = tr->override_target(&cp);
5632  if (e != ERROR_OK) {
5633  LOG_ERROR("The selected transport doesn't support this target");
5634  return JIM_ERR;
5635  }
5636  LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5637  }
5638  /* now does target type exist */
5639  for (x = 0 ; target_types[x] ; x++) {
5640  if (0 == strcmp(cp, target_types[x]->name)) {
5641  /* found */
5642  break;
5643  }
5644 
5645  /* check for deprecated name */
5646  if (target_types[x]->deprecated_name) {
5647  if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5648  /* found */
5649  LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5650  break;
5651  }
5652  }
5653  }
5654  if (target_types[x] == NULL) {
5655  Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5656  for (x = 0 ; target_types[x] ; x++) {
5657  if (target_types[x + 1]) {
5658  Jim_AppendStrings(goi->interp,
5659  Jim_GetResult(goi->interp),
5660  target_types[x]->name,
5661  ", ", NULL);
5662  } else {
5663  Jim_AppendStrings(goi->interp,
5664  Jim_GetResult(goi->interp),
5665  " or ",
5666  target_types[x]->name, NULL);
5667  }
5668  }
5669  return JIM_ERR;
5670  }
5671 
5672  /* Create it */
5673  target = calloc(1, sizeof(struct target));
5674  if (!target) {
5675  LOG_ERROR("Out of memory");
5676  return JIM_ERR;
5677  }
5678 
5679  /* set target number */
5680  target->target_number = new_target_number();
5681 
5682  /* allocate memory for each unique target type */
5683  target->type = malloc(sizeof(struct target_type));
5684  if (!target->type) {
5685  LOG_ERROR("Out of memory");
5686  free(target);
5687  return JIM_ERR;
5688  }
5689 
5690  memcpy(target->type, target_types[x], sizeof(struct target_type));
5691 
5692  /* will be set by "-endian" */
5694 
5695  /* default to first core, override with -coreid */
5696  target->coreid = 0;
5697 
5698  target->working_area = 0x0;
5699  target->working_area_size = 0x0;
5700  target->working_areas = NULL;
5701  target->backup_working_area = 0;
5702 
5703  target->state = TARGET_UNKNOWN;
5705  target->reg_cache = NULL;
5706  target->breakpoints = NULL;
5707  target->watchpoints = NULL;
5708  target->next = NULL;
5709  target->arch_info = NULL;
5710 
5711  target->verbose_halt_msg = true;
5712 
5713  target->halt_issued = false;
5714 
5715  /* initialize trace information */
5716  target->trace_info = calloc(1, sizeof(struct trace));
5717  if (!target->trace_info) {
5718  LOG_ERROR("Out of memory");
5719  free(target->type);
5720  free(target);
5721  return JIM_ERR;
5722  }
5723 
5724  target->dbgmsg = NULL;
5725  target->dbg_msg_enabled = 0;
5726 
5728 
5729  target->rtos = NULL;
5730  target->rtos_auto_detect = false;
5731 
5732  target->gdb_port_override = NULL;
5733  target->gdb_max_connections = 1;
5734 
5735  /* Do the rest as "configure" options */
5736  goi->isconfigure = 1;
5737  e = target_configure(goi, target);
5738 
5739  if (e == JIM_OK) {
5740  if (target->has_dap) {
5741  if (!target->dap_configured) {
5742  Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5743  e = JIM_ERR;
5744  }
5745  } else {
5746  if (!target->tap_configured) {
5747  Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5748  e = JIM_ERR;
5749  }
5750  }
5751  /* tap must be set after target was configured */
5752  if (target->tap == NULL)
5753  e = JIM_ERR;
5754  }
5755 
5756  if (e != JIM_OK) {
5757  rtos_destroy(target);
5758  free(target->gdb_port_override);
5759  free(target->trace_info);
5760  free(target->type);
5761  free(target);
5762  return e;
5763  }
5764 
5765  if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5766  /* default endian to little if not specified */
5767  target->endianness = TARGET_LITTLE_ENDIAN;
5768  }
5769 
5770  cp = Jim_GetString(new_cmd, NULL);
5771  target->cmd_name = strdup(cp);
5772  if (!target->cmd_name) {
5773  LOG_ERROR("Out of memory");
5774  rtos_destroy(target);
5775  free(target->gdb_port_override);
5776  free(target->trace_info);
5777  free(target->type);
5778  free(target);
5779  return JIM_ERR;
5780  }
5781 
5782  if (target->type->target_create) {
5783  e = (*(target->type->target_create))(target, goi->interp);
5784  if (e != ERROR_OK) {
5785  LOG_DEBUG("target_create failed");
5786  free(target->cmd_name);
5787  rtos_destroy(target);
5788  free(target->gdb_port_override);
5789  free(target->trace_info);
5790  free(target->type);
5791  free(target);
5792  return JIM_ERR;
5793  }
5794  }
5795 
5796  /* create the target specific commands */
5797  if (target->type->commands) {
5798  e = register_commands(cmd_ctx, NULL, target->type->commands);
5799  if (ERROR_OK != e)
5800  LOG_ERROR("unable to register '%s' commands", cp);
5801  }
5802 
5803  /* now - create the new target name command */
5804  const struct command_registration target_subcommands[] = {
5805  {
5807  },
5808  {
5809  .chain = target->type->commands,
5810  },
5812  };
5813  const struct command_registration target_commands[] = {
5814  {
5815  .name = cp,
5816  .mode = COMMAND_ANY,
5817  .help = "target command group",
5818  .usage = "",
5819  .chain = target_subcommands,
5820  },
5822  };
5823  e = register_commands(cmd_ctx, NULL, target_commands);
5824  if (e != ERROR_OK) {
5825  if (target->type->deinit_target)
5826  target->type->deinit_target(target);
5827  free(target->cmd_name);
5828  rtos_destroy(target);
5829  free(target->gdb_port_override);
5830  free(target->trace_info);
5831  free(target->type);
5832  free(target);
5833  return JIM_ERR;
5834  }
5835 
5836  struct command *c = command_find_in_context(cmd_ctx, cp);
5837  assert(c);
5838  command_set_handler_data(c, target);
5839 
5840  /* append to end of list */
5842 
5843  cmd_ctx->current_target = target;
5844  return JIM_OK;
5845 }
5846 
5847 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5848 {
5849  if (argc != 1) {
5850  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5851  return JIM_ERR;
5852  }
5853  struct command_context *cmd_ctx = current_command_context(interp);
5854  assert(cmd_ctx != NULL);
5855 
5856  struct target *target = get_current_target_or_null(cmd_ctx);
5857  if (target)
5858  Jim_SetResultString(interp, target_name(target), -1);
5859  return JIM_OK;
5860 }
5861 
5862 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5863 {
5864  if (argc != 1) {
5865  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5866  return JIM_ERR;
5867  }
5868  Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5869  for (unsigned x = 0; NULL != target_types[x]; x++) {
5870  Jim_ListAppendElement(interp, Jim_GetResult(interp),
5871  Jim_NewStringObj(interp, target_types[x]->name, -1));
5872  }
5873  return JIM_OK;
5874 }
5875 
5876 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5877 {
5878  if (argc != 1) {
5879  Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5880  return JIM_ERR;
5881  }
5882  Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5883  struct target *target = all_targets;
5884  while (target) {
5885  Jim_ListAppendElement(interp, Jim_GetResult(interp),
5886  Jim_NewStringObj(interp, target_name(target), -1));
5887  target = target->next;
5888  }
5889  return JIM_OK;
5890 }
5891 
5892 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5893 {
5894  int i;
5895  const char *targetname;
5896  int retval, len;
5897  struct target *target = (struct target *) NULL;
5898  struct target_list *head, *curr, *new;
5899  curr = (struct target_list *) NULL;
5900  head = (struct target_list *) NULL;
5901 
5902  retval = 0;
5903  LOG_DEBUG("%d", argc);
5904  /* argv[1] = target to associate in smp
5905  * argv[2] = target to associate in smp
5906  * argv[3] ...
5907  */
5908 
5909  for (i = 1; i < argc; i++) {
5910 
5911  targetname = Jim_GetString(argv[i], &len);
5912  target = get_target(targetname);
5913  LOG_DEBUG("%s ", targetname);
5914  if (target) {
5915  new = malloc(sizeof(struct target_list));
5916  new->target = target;
5917  new->next = (struct target_list *)NULL;
5918  if (head == (struct target_list *)NULL) {
5919  head = new;
5920  curr = head;
5921  } else {
5922  curr->next = new;
5923  curr = new;
5924  }
5925  }
5926  }
5927  /* now parse the list of cpu and put the target in smp mode*/
5928  curr = head;
5929 
5930  while (curr != (struct target_list *)NULL) {
5931  target = curr->target;
5932  target->smp = 1;
5933  target->head = head;
5934  curr = curr->next;
5935  }
5936 
5937  if (target && target->rtos)
5938  retval = rtos_smp_init(head->target);
5939 
5940  return retval;
5941 }
5942 
5943 
5944 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5945 {
5946  Jim_GetOptInfo goi;
5947  Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5948  if (goi.argc < 3) {
5949  Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5950  "<name> <target_type> [<target_options> ...]");
5951  return JIM_ERR;
5952  }
5953  return target_create(&goi);
5954 }
5955 
5957  {
5958  .name = "init",
5959  .mode = COMMAND_CONFIG,
5960  .handler = handle_target_init_command,
5961  .help = "initialize targets",
5962  .usage = "",
5963  },
5964  {
5965  .name = "create",
5966  .mode = COMMAND_CONFIG,
5967  .jim_handler = jim_target_create,
5968  .usage = "name type '-chain-position' name [options ...]",
5969  .help = "Creates and selects a new target",
5970  },
5971  {
5972  .name = "current",
5973  .mode = COMMAND_ANY,
5974  .jim_handler = jim_target_current,
5975  .help = "Returns the currently selected target",
5976  },
5977  {
5978  .name = "types",
5979  .mode = COMMAND_ANY,
5980  .jim_handler = jim_target_types,
5981  .help = "Returns the available target types as "
5982  "a list of strings",
5983  },
5984  {
5985  .name = "names",
5986  .mode = COMMAND_ANY,
5987  .jim_handler = jim_target_names,
5988  .help = "Returns the names of all targets as a list of strings",
5989  },
5990  {
5991  .name = "smp",
5992  .mode = COMMAND_ANY,
5993  .jim_handler = jim_target_smp,
5994  .usage = "targetname1 targetname2 ...",
5995  .help = "gather several target in a smp list"
5996  },
5997 
5999 };
6000 
6001 struct FastLoad {
6003  uint8_t *data;
6004  int length;
6005 
6006 };
6007 
6008 static int fastload_num;
6009 static struct FastLoad *fastload;
6010 
6011 static void free_fastload(void)
6012 {
6013  if (fastload != NULL) {
6014  for (int i = 0; i < fastload_num; i++)
6015  free(fastload[i].data);
6016  free(fastload);
6017  fastload = NULL;
6018  }
6019 }
6020 
6021 COMMAND_HANDLER(handle_fast_load_image_command)
6022 {
6023  uint8_t *buffer;
6024  size_t buf_cnt;
6025  uint32_t image_size;
6026  target_addr_t min_address = 0;
6027  target_addr_t max_address = -1;
6028 
6029  struct image image;
6030 
6031  int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
6032  &image, &min_address, &max_address);
6033  if (ERROR_OK != retval)
6034  return retval;
6035 
6036  struct duration bench;
6037  duration_start(&bench);
6038 
6039  retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
6040  if (retval != ERROR_OK)
6041  return retval;
6042 
6043  image_size = 0x0;
6044  retval = ERROR_OK;
6045  fastload_num = image.num_sections;
6046  fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
6047  if (fastload == NULL) {
6048  command_print(CMD, "out of memory");
6049  image_close(&image);
6050  return ERROR_FAIL;
6051  }
6052  memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
6053  for (unsigned int i = 0; i < image.num_sections; i++) {
6054  buffer = malloc(image.sections[i].size);
6055  if (buffer == NULL) {
6056  command_print(CMD, "error allocating buffer for section (%d bytes)",
6057  (int)(image.sections[i].size));
6058  retval = ERROR_FAIL;
6059  break;
6060  }
6061 
6062  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
6063  if (retval != ERROR_OK) {
6064  free(buffer);
6065  break;
6066  }
6067 
6068  uint32_t offset = 0;
6069  uint32_t length = buf_cnt;
6070 
6071  /* DANGER!!! beware of unsigned comparison here!!! */
6072 
6073  if ((image.sections[i].base_address + buf_cnt >= min_address) &&
6074  (image.sections[i].base_address < max_address)) {
6075  if (image.sections[i].base_address < min_address) {
6076  /* clip addresses below */
6077  offset += min_address-image.sections[i].base_address;
6078  length -= offset;
6079  }
6080 
6081  if (image.sections[i].base_address + buf_cnt > max_address)
6082  length -= (image.sections[i].base_address + buf_cnt)-max_address;
6083 
6084  fastload[i].address = image.sections[i].base_address + offset;
6085  fastload[i].data = malloc(length);
6086  if (fastload[i].data == NULL) {
6087  free(buffer);
6088  command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
6089  length);
6090  retval = ERROR_FAIL;
6091  break;
6092  }
6093  memcpy(fastload[i].data, buffer + offset, length);
6094  fastload[i].length = length;
6095 
6096  image_size += length;
6097  command_print(CMD, "%u bytes written at address 0x%8.8x",
6098  (unsigned int)length,
6099  ((unsigned int)(image.sections[i].base_address + offset)));
6100  }
6101 
6102  free(buffer);
6103  }
6104 
6105  if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
6106  command_print(CMD, "Loaded %" PRIu32 " bytes "
6107  "in %fs (%0.3f KiB/s)", image_size,
6108  duration_elapsed(&bench), duration_kbps(&bench, image_size));
6109 
6111  "WARNING: image has not been loaded to target!"
6112  "You can issue a 'fast_load' to finish loading.");
6113  }
6114 
6115  image_close(&image);
6116 
6117  if (retval != ERROR_OK)
6118  free_fastload();
6119 
6120  return retval;
6121 }
6122 
6123 COMMAND_HANDLER(handle_fast_load_command)
6124 {
6125  if (CMD_ARGC > 0)
6127  if (fastload == NULL) {
6128  LOG_ERROR("No image in memory");
6129  return ERROR_FAIL;
6130  }
6131  int i;
6132  int64_t ms = timeval_ms();
6133  int size = 0;
6134  int retval = ERROR_OK;
6135  for (i = 0; i < fastload_num; i++) {
6136  struct target *target = get_current_target(CMD_CTX);
6137  command_print(CMD, "Write to 0x%08x, length 0x%08x",
6138  (unsigned int)(fastload[i].address),
6139  (unsigned int)(fastload[i].length));
6140  retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6141  if (retval != ERROR_OK)
6142  break;
6143  size += fastload[i].length;
6144  }
6145  if (retval == ERROR_OK) {
6146  int64_t after = timeval_ms();
6147  command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6148  }
6149  return retval;
6150 }
6151 
6153  {
6154  .name = "targets",
6155  .handler = handle_targets_command,
6156  .mode = COMMAND_ANY,
6157  .help = "change current default target (one parameter) "
6158  "or prints table of all targets (no parameters)",
6159  .usage = "[target]",
6160  },
6161  {
6162  .name = "target",
6163  .mode = COMMAND_CONFIG,
6164  .help = "configure target",
6165  .chain = target_subcommand_handlers,
6166  .usage = "",
6167  },
6169 };
6170 
6172 {
6173  return register_commands(cmd_ctx, NULL, target_command_handlers);
6174 }
6175 
6176 static bool target_reset_nag = true;
6177 
6179 {
6180  return target_reset_nag;
6181 }
6182 
6183 COMMAND_HANDLER(handle_target_reset_nag)
6184 {
6185  return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6186  &target_reset_nag, "Nag after each reset about options to improve "
6187  "performance");
6188 }
6189 
6190 COMMAND_HANDLER(handle_ps_command)
6191 {
6192  struct target *target = get_current_target(CMD_CTX);
6193  char *display;
6194  if (target->state != TARGET_HALTED) {
6195  LOG_INFO("target not halted !!");
6196  return ERROR_OK;
6197  }
6198 
6199  if ((target->rtos) && (target->rtos->type)
6200  && (target->rtos->type->ps_command)) {
6201  display = target->rtos->type->ps_command(target);
6202  command_print(CMD, "%s", display);
6203  free(display);
6204  return ERROR_OK;
6205  } else {
6206  LOG_INFO("failed");
6207  return ERROR_TARGET_FAILURE;
6208  }
6209 }
6210 
6211 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6212 {
6213  if (text != NULL)
6214  command_print_sameline(cmd, "%s", text);
6215  for (int i = 0; i < size; i++)
6216  command_print_sameline(cmd, " %02x", buf[i]);
6217  command_print(cmd, " ");
6218 }
6219 
6220 COMMAND_HANDLER(handle_test_mem_access_command)
6221 {
6222  struct target *target = get_current_target(CMD_CTX);
6223  uint32_t test_size;
6224  int retval = ERROR_OK;
6225 
6226  if (target->state != TARGET_HALTED) {
6227  LOG_INFO("target not halted !!");
6228  return ERROR_FAIL;
6229  }
6230 
6231  if (CMD_ARGC != 1)
6233 
6234  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6235 
6236  /* Test reads */
6237  size_t num_bytes = test_size + 4;
6238 
6239  struct working_area *wa = NULL;
6240  retval = target_alloc_working_area(target, num_bytes, &wa);
6241  if (retval != ERROR_OK) {
6242  LOG_ERROR("Not enough working area");
6243  return ERROR_FAIL;
6244  }
6245 
6246  uint8_t *test_pattern = malloc(num_bytes);
6247 
6248  for (size_t i = 0; i < num_bytes; i++)
6249  test_pattern[i] = rand();
6250 
6251  retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6252  if (retval != ERROR_OK) {
6253  LOG_ERROR("Test pattern write failed");
6254  goto out;
6255  }
6256 
6257  for (int host_offset = 0; host_offset <= 1; host_offset++) {
6258  for (int size = 1; size <= 4; size *= 2) {
6259  for (int offset = 0; offset < 4; offset++) {
6260  uint32_t count = test_size / size;
6261  size_t host_bufsiz = (count + 2) * size + host_offset;
6262  uint8_t *read_ref = malloc(host_bufsiz);
6263  uint8_t *read_buf = malloc(host_bufsiz);
6264 
6265  for (size_t i = 0; i < host_bufsiz; i++) {
6266  read_ref[i] = rand();
6267  read_buf[i] = read_ref[i];
6268  }
6270  "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6271  size, offset, host_offset ? "un" : "");
6272 
6273  struct duration bench;
6274  duration_start(&bench);
6275 
6276  retval = target_read_memory(target, wa->address + offset, size, count,
6277  read_buf + size + host_offset);
6278 
6279  duration_measure(&bench);
6280 
6281  if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6282  command_print(CMD, "Unsupported alignment");
6283  goto next;
6284  } else if (retval != ERROR_OK) {
6285  command_print(CMD, "Memory read failed");
6286  goto next;
6287  }
6288 
6289  /* replay on host */
6290  memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6291 
6292  /* check result */
6293  int result = memcmp(read_ref, read_buf, host_bufsiz);
6294  if (result == 0) {
6295  command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6296  duration_elapsed(&bench),
6297  duration_kbps(&bench, count * size));
6298  } else {
6299  command_print(CMD, "Compare failed");
6300  binprint(CMD, "ref:", read_ref, host_bufsiz);
6301  binprint(CMD, "buf:", read_buf, host_bufsiz);
6302  }
6303 next:
6304  free(read_ref);
6305  free(read_buf);
6306  }
6307  }
6308  }
6309 
6310 out:
6311  free(test_pattern);
6312 
6313  if (wa != NULL)
6314  target_free_working_area(target, wa);
6315 
6316  /* Test writes */
6317  num_bytes = test_size + 4 + 4 + 4;
6318 
6319  retval = target_alloc_working_area(target, num_bytes, &wa);
6320  if (retval != ERROR_OK) {
6321  LOG_ERROR("Not enough working area");
6322  return ERROR_FAIL;
6323  }
6324 
6325  test_pattern = malloc(num_bytes);
6326 
6327  for (size_t i = 0; i < num_bytes; i++)
6328  test_pattern[i] = rand();
6329 
6330  for (int host_offset = 0; host_offset <= 1; host_offset++) {
6331  for (int size = 1; size <= 4; size *= 2) {
6332  for (int offset = 0; offset < 4; offset++) {
6333  uint32_t count = test_size / size;
6334  size_t host_bufsiz = count * size + host_offset;
6335  uint8_t *read_ref = malloc(num_bytes);
6336  uint8_t *read_buf = malloc(num_bytes);
6337  uint8_t *write_buf = malloc(host_bufsiz);
6338 
6339  for (size_t i = 0; i < host_bufsiz; i++)
6340  write_buf[i] = rand();
6342  "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6343  size, offset, host_offset ? "un" : "");
6344 
6345  retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6346  if (retval != ERROR_OK) {
6347  command_print(CMD, "Test pattern write failed");
6348  goto nextw;
6349  }
6350 
6351  /* replay on host */
6352  memcpy(read_ref, test_pattern, num_bytes);
6353  memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6354 
6355  struct duration bench;
6356  duration_start(&bench);
6357 
6358  retval = target_write_memory(target, wa->address + size + offset, size, count,
6359  write_buf + host_offset);
6360 
6361  duration_measure(&bench);
6362 
6363  if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6364  command_print(CMD, "Unsupported alignment");
6365  goto nextw;
6366  } else if (retval != ERROR_OK) {
6367  command_print(CMD, "Memory write failed");
6368  goto nextw;
6369  }
6370 
6371  /* read back */
6372  retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6373  if (retval != ERROR_OK) {
6374  command_print(CMD, "Test pattern write failed");
6375  goto nextw;
6376  }
6377 
6378  /* check result */
6379  int result = memcmp(read_ref, read_buf, num_bytes);
6380  if (result == 0) {
6381  command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6382  duration_elapsed(&bench),
6383  duration_kbps(&bench, count * size));
6384  } else {
6385  command_print(CMD, "Compare failed");
6386  binprint(CMD, "ref:", read_ref, num_bytes);
6387  binprint(CMD, "buf:", read_buf, num_bytes);
6388  }
6389 nextw:
6390  free(read_ref);
6391  free(read_buf);
6392  }
6393  }
6394  }
6395 
6396  free(test_pattern);
6397 
6398  if (wa != NULL)
6399  target_free_working_area(target, wa);
6400  return retval;
6401 }
6402 
6404  {
6405  .name = "fast_load_image",
6406  .handler = handle_fast_load_image_command,
6407  .mode = COMMAND_ANY,
6408  .help = "Load image into server memory for later use by "
6409  "fast_load; primarily for profiling",
6410  .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6411  "[min_address [max_length]]",
6412  },
6413  {
6414  .name = "fast_load",
6415  .handler = handle_fast_load_command,
6416  .mode = COMMAND_EXEC,
6417  .help = "loads active fast load image to current target "
6418  "- mainly for profiling purposes",
6419  .usage = "",
6420  },
6421  {
6422  .name = "profile",
6423  .handler = handle_profile_command,
6424  .mode = COMMAND_EXEC,
6425  .usage = "seconds filename [start end]",
6426  .help = "profiling samples the CPU PC",
6427  },
6429  {
6430  .name = "virt2phys",
6431  .handler = handle_virt2phys_command,
6432  .mode = COMMAND_ANY,
6433  .help = "translate a virtual address into a physical address",
6434  .usage = "virtual_address",
6435  },
6436  {
6437  .name = "reg",
6438  .handler = handle_reg_command,
6439  .mode = COMMAND_EXEC,
6440  .help = "display (reread from target with \"force\") or set a register; "
6441  "with no arguments, displays all registers and their values",
6442  .usage = "[(register_number|register_name) [(value|'force')]]",
6443  },
6444  {
6445  .name = "poll",
6446  .handler = handle_poll_command,
6447  .mode = COMMAND_EXEC,
6448  .help = "poll target state; or reconfigure background polling",
6449  .usage = "['on'|'off']",
6450  },
6451  {
6452  .name = "wait_halt",
6453  .handler = handle_wait_halt_command,
6454  .mode = COMMAND_EXEC,
6455  .help = "wait up to the specified number of milliseconds "
6456  "(default 5000) for a previously requested halt",
6457  .usage = "[milliseconds]",
6458  },
6459  {
6460  .name = "halt",
6461  .handler = handle_halt_command,
6462  .mode = COMMAND_EXEC,
6463  .help = "request target to halt, then wait up to the specified "
6464  "number of milliseconds (default 5000) for it to complete",
6465  .usage = "[milliseconds]",
6466  },
6467  {
6468  .name = "resume",
6469  .handler = handle_resume_command,
6470  .mode = COMMAND_EXEC,
6471  .help = "resume target execution from current PC or address",
6472  .usage = "[address]",
6473  },
6474  {
6475  .name = "reset",
6476  .handler = handle_reset_command,
6477  .mode = COMMAND_EXEC,
6478  .usage = "[run|halt|init]",
6479  .help = "Reset all targets into the specified mode. "
6480  "Default reset mode is run, if not given.",
6481  },
6482  {
6483  .name = "soft_reset_halt",
6484  .handler = handle_soft_reset_halt_command,
6485  .mode = COMMAND_EXEC,
6486  .usage = "",
6487  .help = "halt the target and do a soft reset",
6488  },
6489  {
6490  .name = "step",
6491  .handler = handle_step_command,
6492  .mode = COMMAND_EXEC,
6493  .help = "step one instruction from current PC or address",
6494  .usage = "[address]",
6495  },
6496  {
6497  .name = "mdd",
6498  .handler = handle_md_command,
6499  .mode = COMMAND_EXEC,
6500  .help = "display memory double-words",
6501  .usage = "['phys'] address [count]",
6502  },
6503  {
6504  .name = "mdw",
6505  .handler = handle_md_command,
6506  .mode = COMMAND_EXEC,
6507  .help = "display memory words",
6508  .usage = "['phys'] address [count]",
6509  },
6510  {
6511  .name = "mdh",
6512  .handler = handle_md_command,
6513  .mode = COMMAND_EXEC,
6514  .help = "display memory half-words",
6515  .usage = "['phys'] address [count]",
6516  },
6517  {
6518  .name = "mdb",
6519  .handler = handle_md_command,
6520  .mode = COMMAND_EXEC,
6521  .help = "display memory bytes",
6522  .usage = "['phys'] address [count]",
6523  },
6524  {
6525  .name = "mwd",
6526  .handler = handle_mw_command,
6527  .mode = COMMAND_EXEC,
6528  .help = "write memory double-word",
6529  .usage = "['phys'] address value [count]",
6530  },
6531  {
6532  .name = "mww",
6533  .handler = handle_mw_command,
6534  .mode = COMMAND_EXEC,
6535  .help = "write memory word",
6536  .usage = "['phys'] address value [count]",
6537  },
6538  {
6539  .name = "mwh",
6540  .handler = handle_mw_command,
6541  .mode = COMMAND_EXEC,
6542  .help = "write memory half-word",
6543  .usage = "['phys'] address value [count]",
6544  },
6545  {
6546  .name = "mwb",
6547  .handler = handle_mw_command,
6548  .mode = COMMAND_EXEC,
6549  .help = "write memory byte",
6550  .usage = "['phys'] address value [count]",
6551  },
6552  {
6553  .name = "bp",
6554  .handler = handle_bp_command,
6555  .mode = COMMAND_EXEC,
6556  .help = "list or set hardware or software breakpoint",
6557  .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6558  },
6559  {
6560  .name = "rbp",
6561  .handler = handle_rbp_command,
6562  .mode = COMMAND_EXEC,
6563  .help = "remove breakpoint",
6564  .usage = "'all' | address",
6565  },
6566  {
6567  .name = "wp",
6568  .handler = handle_wp_command,
6569  .mode = COMMAND_EXEC,
6570  .help = "list (no params) or create watchpoints",
6571  .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6572  },
6573  {
6574  .name = "rwp",
6575  .handler = handle_rwp_command,
6576  .mode = COMMAND_EXEC,
6577  .help = "remove watchpoint",
6578  .usage = "address",
6579  },
6580  {
6581  .name = "load_image",
6582  .handler = handle_load_image_command,
6583  .mode = COMMAND_EXEC,
6584  .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6585  "[min_address] [max_length]",
6586  },
6587  {
6588  .name = "dump_image",
6589  .handler = handle_dump_image_command,
6590  .mode = COMMAND_EXEC,
6591  .usage = "filename address size",
6592  },
6593  {
6594  .name = "verify_image_checksum",
6595  .handler = handle_verify_image_checksum_command,
6596  .mode = COMMAND_EXEC,
6597  .usage = "filename [offset [type]]",
6598  },
6599  {
6600  .name = "verify_image",
6601  .handler = handle_verify_image_command,
6602  .mode = COMMAND_EXEC,
6603  .usage = "filename [offset [type]]",
6604  },
6605  {
6606  .name = "test_image",
6607  .handler = handle_test_image_command,
6608  .mode = COMMAND_EXEC,
6609  .usage = "filename [offset [type]]",
6610  },
6611  {
6612  .name = "mem2array",
6613  .mode = COMMAND_EXEC,
6614  .jim_handler = jim_mem2array,
6615  .help = "read 8/16/32 bit memory and return as a TCL array "
6616  "for script processing",
6617  .usage = "arrayname bitwidth address count",
6618  },
6619  {
6620  .name = "array2mem",
6621  .mode = COMMAND_EXEC,
6622  .jim_handler = jim_array2mem,
6623  .help = "convert a TCL array to memory locations "
6624  "and write the 8/16/32 bit values",
6625  .usage = "arrayname bitwidth address count",
6626  },
6627  {
6628  .name = "reset_nag",
6629  .handler = handle_target_reset_nag,
6630  .mode = COMMAND_ANY,
6631  .help = "Nag after each reset about options that could have been "
6632  "enabled to improve performance. ",
6633  .usage = "['enable'|'disable']",
6634  },
6635  {
6636  .name = "ps",
6637  .handler = handle_ps_command,
6638  .mode = COMMAND_EXEC,
6639  .help = "list all tasks ",
6640  .usage = " ",
6641  },
6642  {
6643  .name = "test_mem_access",
6644  .handler = handle_test_mem_access_command,
6645  .mode = COMMAND_EXEC,
6646  .help = "Test the target's memory access functions",
6647  .usage = "size",
6648  },
6649 
6651 };
6653 {
6654  int retval = ERROR_OK;
6655  retval = target_request_register_commands(cmd_ctx);
6656  if (retval != ERROR_OK)
6657  return retval;
6658 
6659  retval = trace_register_commands(cmd_ctx);
6660  if (retval != ERROR_OK)
6661  return retval;
6662 
6663 
6664  return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6665 }
static int target_call_timer_callbacks_check_time(int checktime)
struct target_type arm9tdmi_target
Holds methods for ARM9TDMI targets.
Definition: arm9tdmi.c:899
static void writeString(FILE *f, char *s)
bool rtos_auto_detect
Definition: target.h:198
int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
bool defer_examine
Should we defer examine to later.
Definition: target.h:137
static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
static int handle_bp_command_set(struct command_invocation *cmd, target_addr_t addr, uint32_t asid, uint32_t length, int hw)
target_addr_t target_address_max(struct target *target)
Return the highest accessible address for this target.
static void writeLong(FILE *f, int l, struct target *target)
const char * target_reset_mode_name(enum target_reset_mode reset_mode)
Return the name of a target reset reason enumeration value.
#define ERROR_FLASH_OPERATION_FAILED
Definition: flash/common.h:40
int(* target_jim_configure)(struct target *target, Jim_GetOptInfo *goi)
Definition: target_type.h:214
static void append_to_list_all_targets(struct target *target)
struct target_type quark_x10xx_target
Definition: quark_x10xx.c:68
void target_free_all_working_areas(struct target *target)
int(* profiling)(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
Definition: target_type.h:292
bool dap_configured
Definition: target.h:193
struct reg_cache * next
Definition: register.h:154
static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
void command_set_handler_data(struct command *c, void *p)
Update the private command data field for a command and all descendents.
Definition: command.c:468
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:438
static void print_wa_layout(struct target *target)
int fileio_size(struct fileio *fileio, size_t *size)
FIX!!!!
int target_call_timer_callbacks(void)
const char * target_state_name(struct target *t)
Return the name of this targets current state.
static struct target_type * target_types[]
int(* override_target)(const char **targetname)
Optional.
Definition: transport.h:77
target_addr_t working_area
Definition: target.h:159
static const Jim_Nvp nvp_target_event[]
enum command_mode mode
Definition: command.h:54
const struct reg_arch_type * type
Definition: register.h:149
static int target_call_timer_callback(struct target_timer_callback *cb, struct timeval *now)
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
static int new_target_number(void)
int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
int jtag_srst_asserted(int *srst_asserted)
Definition: jtag/core.c:1905
static uint16_t output
Definition: ftdi.c:129
int jtag_power_dropout(int *dropout)
Definition: jtag/core.c:1890
bool base_address_set
Definition: image.h:60
int(* write_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Target memory write callback.
Definition: target_type.h:136
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
const char * name
Definition: register.h:121
#define LOG_USER(expr ...)
Definition: log.h:135
struct target_list * head
Definition: target.h:202
static void list_add(struct list_head *new, struct list_head *head)
list_add - add a new entry : new entry to be added : list head to add it after
Definition: list.h:73
static int target_restore_working_area(struct target *target, struct working_area *area)
target_addr_t working_area_phys
Definition: target.h:164
watchpoint_rw
Definition: breakpoints.h:31
static void target_free_all_working_areas_restore(struct target *target, int restore)
int target_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Obtain the registers for GDB.
const char * name
Definition: register.h:153
static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
int(* remove_watchpoint)(struct target *target, struct watchpoint *watchpoint)
Definition: target_type.h:182
struct reg * register_get_by_name(struct reg_cache *first, const char *name, bool search_all)
Definition: register.c:62
#define CMD_NAME
Use this macro to access the name of the command being handled, rather than accessing the variable di...
Definition: command.h:149
static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
verify_mode
char * gdb_port_override
Definition: target.h:212
int target_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Jim_Obj *const * argv
Definition: jim-nvp.h:163
int argc
Definition: jim-nvp.h:162
struct target_type avr_target
Definition: avrt.c:50
target_state
Definition: target.h:61
int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
int register_commands(struct command_context *cmd_ctx, struct command *parent, const struct command_registration *cmds)
Register one or more commands in the specified context, as children of parent (or top-level commends...
Definition: command.c:398
struct target_type ls1_sap_target
Definition: ls1_sap.c:225
void keep_alive(void)
Definition: helper/log.c:431
int target_examine(void)
int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
void target_handle_event(struct target *target, enum target_event e)
int duration_measure(struct duration *duration)
Update the duration->elapsed field to finish the duration measurment.
Definition: time_support.c:85
const char * name
Name of this type of target.
Definition: target_type.h:42
const char * name
Definition: armv4_5.c:87
bool exist
Definition: register.h:136
static void h_u32_to_le(uint8_t *buf, int val)
Definition: types.h:195
const char * type
Definition: arm_adi_v5.c:1078
static const Jim_Nvp nvp_error_target[]
void jtag_poll_set_enabled(bool value)
Assign flag reporting whether JTAG polling is disallowed.
Definition: jtag/core.c:176
target_reset_mode
Definition: target.h:74
int(* arch_state)(struct target *target)
Definition: target_type.h:49
struct working_area * working_areas
Definition: target.h:167
struct target_type dragonite_target
Definition: feroceon.c:741
int(* init_target)(struct command_context *cmd_ctx, struct target *target)
Definition: target_type.h:241
static int runSrstDeasserted
int target_wait_state(struct target *target, enum target_state state, int ms)
uint8_t * value
Definition: register.h:130
int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
char * buf_to_hex_str(const void *_buf, unsigned buf_len)
Definition: binarybuffer.c:202
nvp_assert
Definition: target.h:69
struct list_head list
Definition: target.h:313
bool running_alg
true if the target is currently running a downloaded "algorithm" instead of arbitrary user code...
Definition: target.h:154
When run_command is called, a new instance will be created on the stack, filled with the proper value...
Definition: command.h:76
uint32_t dbgbase
Definition: target.h:189
static void h_u16_to_be(uint8_t *buf, int val)
Definition: types.h:231
int(* add_watchpoint)(struct target *target, struct watchpoint *watchpoint)
Definition: target_type.h:176
int32_t coreid
Definition: target.h:134
int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
struct target * get_target(const char *id)
static int target_fill_mem(struct target *target, target_addr_t address, target_write_fn fn, unsigned data_size, uint64_t b, unsigned c)
static int jim_target_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
A TCL -ish GetOpt like code.
Definition: jim-nvp.h:160
static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
char * alloc_printf(const char *format,...)
Definition: helper/log.c:378
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:771
static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
int reset_halt
Definition: target.h:158
Wrapper for transport lifecycle operations.
Definition: transport.h:46
int(* callback)(struct target *target, enum target_reset_mode reset_mode, void *priv)
Definition: target.h:315
static int jim_target_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
#define COMMAND_PARSE_ON_OFF(in, out)
parses an on/off command argument
Definition: command.h:405
Jim_Nvp * Jim_Nvp_name2value_simple(const Jim_Nvp *p, const char *name)
Definition: jim-nvp.c:66
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
static void target_merge_working_areas(struct target *target)
struct target_type nds32_v2_target
Holds methods for V2 targets.
Definition: nds32_v2.c:740
Definition: psoc6.c:94
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:773
static uint32_t le_to_h_u24(const uint8_t *buf)
Definition: types.h:134
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
void command_print_sameline(struct command_invocation *cmd, const char *format,...)
Definition: command.c:482
uint32_t length
Definition: breakpoints.h:49
int watchpoint_add(struct target *target, target_addr_t address, uint32_t length, enum watchpoint_rw rw, uint32_t value, uint32_t mask)
Definition: breakpoints.c:418
int target_call_timer_callbacks_now(void)
Invoke this to ensure that e.g.
#define ERROR_FAIL
Definition: log.h:153
struct target_type nds32_v3m_target
Holds methods for NDS32 V3m targets.
Definition: nds32_v3m.c:458
uint8_t * data
int64_t timeval_ms(void)
Definition: image.h:55
struct target_type arm720t_target
Holds methods for ARM720 targets.
Definition: arm720t.c:554
void target_quit(void)
Free all the resources allocated by targets and the target layer.
int target_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
int(* add_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:165
static int target_profiling(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
static uint32_t le_to_h_u32(const uint8_t *buf)
Definition: types.h:129
target_cfg_param
int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
Name Value Pairs, aka: NVP.
Definition: jim-nvp.h:84
struct target_type or1k_target
Definition: or1k.c:1428
static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image, target_addr_t *min_address, target_addr_t *max_address)
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
struct target_type cortexm_target
Definition: cortex_m.c:2499
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:144
static uint32_t be_to_h_u32(const uint8_t *buf)
Definition: types.h:156
static struct target_timer_callback * target_timer_callbacks
int target_unregister_timer_callback(int(*callback)(void *priv), void *priv)
struct debug_msg_receiver * dbgmsg
Definition: target.h:176
struct target_type arm926ejs_target
Holds methods for ARM926 targets.
Definition: arm926ejs.c:801
struct target_event_callback * next
Definition: target.h:309
uint32_t size
Definition: register.h:140
static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
char * dotted_name
Definition: jtag.h:124
void breakpoint_remove_all(struct target *target)
Definition: breakpoints.c:365
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:139
uint32_t offset
Definition: arm_cti.c:179
uint64_t target_addr_t
Definition: types.h:352
enum target_debug_reason debug_reason
Definition: target.h:168
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
int target_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add the watchpoint for target.
int target_unregister_reset_callback(int(*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv), void *priv)
struct target_type mem_ap_target
Definition: mem_ap.c:176
bool working_area_virt_spec
Definition: target.h:161
static int fastload_num
struct gdb_fileio_info * fileio_info
Definition: target.h:210
static void target_destroy(struct target *target)
static int no_mmu(struct target *target, int *enabled)
uint8_t * orig_instr
Definition: breakpoints.h:41
struct target_type arm7tdmi_target
Holds methods for ARM7TDMI targets.
Definition: arm7tdmi.c:695
static int sense_handler(void)
static int target_configure(Jim_GetOptInfo *goi, struct target *target)
int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
Pass GDB file-I/O response to target after finishing host syscall.
static bool target_was_examined(struct target *target)
Definition: target.h:431
int(* blank_check_memory)(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Definition: target_type.h:149
struct target_type cortexr4_target
Definition: cortex_a.c:3225
static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
struct target_timer_callback * next
Definition: target.h:336
static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
#define ERROR_TARGET_INVALID
Definition: target.h:768
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly...
Definition: command.h:129
static int runSrstAsserted
#define LOG_INFO(expr ...)
Definition: log.h:126
unsigned num_regs
Definition: register.h:156
static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
int target_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the ContextID & IVA breakpoint for target.
This holds methods shared between all instances of a given target type.
Definition: target_type.h:37
struct target_type arm966e_target
Holds methods for ARM966 targets.
Definition: arm966e.c:256
#define COMMAND_PARSE_ADDRESS(in, out)
Definition: command.h:378
uint8_t * backup
Definition: target.h:102
uint32_t dbg_msg_enabled
Definition: target.h:177
static struct target_event_callback * target_event_callbacks
void rtos_destroy(struct target *target)
Definition: rtos.c:165
struct imagesection * sections
Definition: image.h:59
static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
int context_breakpoint_add(struct target *target, uint32_t asid, uint32_t length, enum breakpoint_type type)
Definition: breakpoints.c:245
static int jim_target_tap_disabled(Jim_Interp *interp)
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:505
struct target_type arm946e_target
Holds methods for ARM946 targets.
Definition: arm946e.c:749
static void list_del(struct list_head *entry)
Definition: list.h:117
int Jim_GetOpt_Obj(Jim_GetOptInfo *goi, Jim_Obj **puthere)
Remove argv[0] from the list.
Definition: jim-nvp.c:189
int target_free_working_area(struct target *target, struct working_area *area)
int(* write_phys_memory)(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: target_type.h:269
bool examined
Indicates whether this target has been examined.
Definition: target.h:145
uint32_t asid
Definition: breakpoints.h:37
struct target_event_action * next
Definition: target.h:301
int64_t halt_issued_time
Definition: target.h:185
struct reg * reg_list
Definition: register.h:155
char * cmd_name
Definition: target.h:131
int gettimeofday(struct timeval *tv, struct timezone *tz)
int(* poll)(struct target *target)
Definition: target_type.h:46
static uint32_t be_to_h_u24(const uint8_t *buf)
Definition: types.h:161
int(* target_create)(struct target *target, Jim_Interp *interp)
Definition: target_type.h:209
uint32_t value
Definition: breakpoints.h:51
int target_halt(struct target *target)
uint32_t mask
Definition: breakpoints.h:50
int target_profiling_default(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
uint32_t size
Definition: image.h:50
static int target_get_gdb_fileio_info_default(struct target *target, struct gdb_fileio_info *fileio_info)
struct target_type xscale_target
Definition: xscale.c:3714
bool halt_issued
Definition: target.h:184
const char * name
Definition: jim-nvp.h:85
int target_arch_state(struct target *target)
void watchpoint_remove(struct target *target, target_addr_t address)
Definition: breakpoints.c:505
static const Jim_Nvp nvp_target_debug_reason[]
static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
#define ERROR_TARGET_FAILURE
Definition: target.h:772
#define LOG_ERROR(expr ...)
Definition: log.h:132
struct breakpoint * breakpoints
Definition: target.h:173
static int identity_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical)
#define list_for_each_entry(pos, head, member)
list_for_each_entry - iterate over list of given type : the type * to use as a loop cursor...
Definition: list.h:435
static void h_u64_to_be(uint8_t *buf, int64_t val)
Definition: types.h:183
enum target_endianness endianness
Definition: target.h:169
int target_examine_one(struct target *target)
Examine the specified target, letting it perform any Initialisation that requires JTAG access...
int(* callback)(void *priv)
Definition: target.h:330
void target_handle_md_output(struct command_invocation *cmd, struct target *target, target_addr_t address, unsigned size, unsigned count, const uint8_t *buffer)
struct target_type nds32_v3_target
Holds methods for Andes1337 targets.
Definition: nds32_v3.c:471
int(* run_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, int timeout_ms, void *arch_info)
Target algorithm support.
Definition: target_type.h:193
int jtag_register_event_callback(jtag_event_handler_t callback, void *priv)
Definition: jtag/core.c:281
static struct FastLoad * fastload
int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
#define COMMAND_PARSE_NUMBER(type, in, out)
parses the string in into out as a type, or prints a command error and passes the error code to the c...
Definition: command.h:368
struct target * all_targets
static int srstAsserted
COMMAND_HANDLER(handle_target_init_command)
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:769
int rtos_create(Jim_GetOptInfo *goi, struct target *target)
Definition: rtos.c:123
bool hidden
Definition: register.h:138
static const Jim_Nvp nvp_target_state[]
int target_poll(struct target *target)
int breakpoint_add(struct target *target, target_addr_t address, uint32_t length, enum breakpoint_type type)
Definition: breakpoints.c:220
struct trace * trace_info
Definition: target.h:175
#define ERROR_TARGET_NOT_EXAMINED
Definition: target.h:778
void(* deinit_target)(struct target *target)
Free all the resources allocated by the target.
Definition: target_type.h:248
static int target_write_buffer_default(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
int target_request_register_commands(struct command_context *cmd_ctx)
int hybrid_breakpoint_add(struct target *target, target_addr_t address, uint32_t asid, uint32_t length, enum breakpoint_type type)
Definition: breakpoints.c:267
int smp
Definition: target.h:201
int(* add_hybrid_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:167
jtag_event
Definition: jtag.h:194
Jim_Interp * interp
Definition: jim-nvp.h:161
#define CONNECTION_LIMIT_UNLIMITED
Definition: server.h:44
struct target_type fa526_target
Holds methods for FA526 targets.
Definition: fa526.c:361
int bits
Definition: zy1000.c:962
struct list_head list
Definition: target.h:319
void breakpoint_remove(struct target *target, target_addr_t address)
Definition: breakpoints.c:347
int(* get_gdb_reg_list)(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Target register access for GDB.
Definition: target_type.h:111
int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
static LIST_HEAD(target_reset_callback_list)
bool get_target_reset_nag(void)
struct timeval when
Definition: target.h:334
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
static int runPowerRestore
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:234
static void h_u24_to_le(uint8_t *buf, int val)
Definition: types.h:211
int target_wait_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t exit_point, int timeout_ms, void *arch_info)
Waits for an algorithm started with target_start_algorithm() to complete.
bool free
Definition: target.h:101
int timeval_compare(const struct timeval *x, const struct timeval *y)
Definition: time_support.c:66
bool target_has_event_action(struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
int(* examine)(struct target *target)
This method is used to perform target setup that requires JTAG access.
Definition: target_type.h:234
int(* virt2phys)(struct target *target, target_addr_t address, target_addr_t *physical)
Definition: target_type.h:253
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
static int target_init(struct command_context *cmd_ctx)
struct reg_cache * reg_cache
Definition: target.h:172
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:328
#define LOG_WARNING(expr ...)
Definition: log.h:129
static const char * target_name(struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:241
static uint64_t be_to_h_u64(const uint8_t *buf)
Definition: types.h:144
struct target_event_action * event_action
Definition: target.h:156
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
unsigned int num_sections
Definition: image.h:58
static uint16_t le_to_h_u16(const uint8_t *buf)
Definition: types.h:139
int(* set)(struct reg *reg, uint8_t *buf)
Definition: register.h:161
float duration_elapsed(const struct duration *duration)
Definition: time_support.c:94
target_timer_type
Definition: target.h:324
Definition: jtag.h:121
enum target_timer_type type
Definition: target.h:332
int(* hit_watchpoint)(struct target *target, struct watchpoint **hit_watchpoint)
Definition: target_type.h:187
bool tap_configured
Definition: target.h:194
static void h_u64_to_le(uint8_t *buf, int64_t val)
Definition: types.h:171
int Jim_GetOpt_Wide(Jim_GetOptInfo *goi, jim_wide *puthere)
Remove argv[0] as wide.
Definition: jim-nvp.c:242
struct target * target
Definition: target.h:221
struct target_type arm920t_target
Holds methods for ARM920 targets.
Definition: arm920t.c:1690
unsigned short width
Definition: embeddedice.c:58
enum target_state state
Definition: target.h:171
Jim_Interp * interp
Definition: command.h:53
int(* wait_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t exit_point, int timeout_ms, void *arch_info)
Definition: target_type.h:201
static const Jim_Nvp nvp_reset_modes[]
struct watchpoint * next
Definition: breakpoints.h:54
struct jtag_tap * jtag_tap_by_jim_obj(Jim_Interp *interp, Jim_Obj *obj)
Definition: jtag/tcl.c:61
Upper level NOR flash interfaces.
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:230
const char * name
Definition: command.h:216
int str_to_buf(const char *str, unsigned str_len, void *_buf, unsigned buf_len, unsigned radix)
Definition: binarybuffer.c:243
bool jtag_poll_get_enabled(void)
Return flag reporting whether JTAG polling is disallowed.
Definition: jtag/core.c:171
int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
Jim_Obj * body
Definition: target.h:300
int image_calculate_checksum(const uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
Definition: image.c:1022
int timeval_add_time(struct timeval *result, long sec, long usec)
Definition: time_support.c:52
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:134
struct target * get_current_target(struct command_context *cmd_ctx)
#define ERROR_COMMAND_CLOSE_CONNECTION
Definition: command.h:327
Definition: register.h:119
bool working_area_phys_spec
Definition: target.h:163
int(* remove_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:173
int(* get_gdb_fileio_info)(struct target *target, struct gdb_fileio_info *fileio_info)
Definition: target_type.h:284
static int default_examine(struct target *target)
int isconfigure
Definition: jim-nvp.h:164
static int target_gdb_fileio_end_default(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
int(* deassert_reset)(struct target *target)
The implementation is responsible for polling the target such that target->state reflects the state c...
Definition: target_type.h:88
static void h_u16_to_le(uint8_t *buf, int val)
Definition: types.h:225
int Jim_GetOpt_Nvp(Jim_GetOptInfo *goi, const Jim_Nvp *nvp, Jim_Nvp **puthere)
Remove argv[0] as NVP.
Definition: jim-nvp.c:257
int target_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
Downloads a target-specific native code algorithm to the target, and executes it. ...
struct target_type aarch64_target
Definition: aarch64.c:2862
const char * target_get_gdb_arch(struct target *target)
Obtain the architecture for GDB.
int target_register_trace_callback(int(*callback)(struct target *target, size_t len, uint8_t *data, void *priv), void *priv)
int target_register_event_callback(int(*callback)(struct target *target, enum target_event event, void *priv), void *priv)
uint32_t backup_working_area
Definition: target.h:166
void image_close(struct image *image)
Definition: image.c:973
Jim_Interp * interp
Definition: target.h:299
int(* soft_reset_halt)(struct target *target)
Definition: target_type.h:89
int(* mmu)(struct target *target, int *enabled)
Definition: target_type.h:272
struct target_type esirisc_target
Definition: esirisc.c:1803
struct target_type cortexa_target
Definition: cortex_a.c:3144
struct target_type feroceon_target
Definition: feroceon.c:702
int target_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
Find out the just hit watchpoint for target.
bool enabled
Is this TAP currently enabled?
Definition: jtag.h:129
bool valid
Definition: register.h:134
struct target_type testee_target
Definition: testee.c:64
struct target * current_target_override
Definition: command.h:58
target_addr_t address
Definition: breakpoints.h:48
float duration_kbps(const struct duration *duration, size_t count)
Definition: time_support.c:101
struct transport * get_current_transport(void)
Returns the transport currently being used by this debug or programming session.
uint32_t target_get_working_area_avail(struct target *target)
#define ERROR_TARGET_NOT_RUNNING
Definition: target.h:777
#define DIV_ROUND_UP(m, n)
Rounds m up to the nearest multiple of n using division.
Definition: types.h:96
const struct rtos_type * type
Definition: rtos.h:48
static int default_check_reset(struct target *target)
int image_open(struct image *image, const char *url, const char *type_string)
Definition: image.c:725
#define ERROR_TARGET_TIMEOUT
Definition: target.h:770
int target_get_gdb_reg_list_noread(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Obtain the registers for GDB, but don&#39;t read register values from the target.
size_t size
Size of the control block search area.
Definition: rtt/rtt.c:37
int target_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
Step the target.
struct target_type dsp563xx_target
Holds methods for DSP563XX targets.
Definition: dsp563xx.c:2252
static const Jim_Nvp nvp_target_endian[]
struct command * command_find_in_context(struct command_context *cmd_ctx, const char *name)
Definition: command.c:244
int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
const char * usage
a string listing the options and arguments, required or optional
Definition: command.h:222
bool verbose_halt_msg
Definition: target.h:182
int(* halt)(struct target *target)
Definition: target_type.h:55
uint32_t working_area_size
Definition: target.h:165
static uint16_t be_to_h_u16(const uint8_t *buf)
Definition: types.h:166
const char * target_type_name(struct target *target)
Get the target type name.
int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
struct target_type dsp5680xx_target
Holds methods for dsp5680xx targets.
Definition: dsp5680xx.c:2277
#define DEFAULT_HALT_TIMEOUT
Definition: target/target.c:60
int jtag_unregister_event_callback(jtag_event_handler_t callback, void *priv)
Definition: jtag/core.c:302
const struct command_registration * commands
Definition: target_type.h:206
char *(* ps_command)(struct target *target)
Definition: rtos.h:83
target_addr_t base_address
Definition: image.h:49
int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
int(* get_gdb_reg_list_noread)(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Same as get_gdb_reg_list, but doesn&#39;t read the register values.
Definition: target_type.h:117
static void h_u24_to_be(uint8_t *buf, int val)
Definition: types.h:218
int(* resume)(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution)
Definition: target_type.h:57
struct target_type mips_mips64_target
Definition: mips_mips64.c:1158
int trace_register_commands(struct command_context *cmd_ctx)
Definition: trace.c:170
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:775
struct target_type * type
Definition: target.h:130
static void target_split_working_area(struct working_area *area, uint32_t size)
enum breakpoint_type type
Definition: breakpoints.h:39
int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned first, unsigned num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word...
Definition: binarybuffer.h:109
int target_run_flash_async_algorithm(struct target *target, const uint8_t *buffer, uint32_t count, int block_size, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t buffer_start, uint32_t buffer_size, uint32_t entry_point, uint32_t exit_point, void *arch_info)
Streams data to a circular buffer on target intended for consumption by code running asynchronously o...
struct working_area * next
Definition: target.h:104
int target_register_reset_callback(int(*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv), void *priv)
struct target_type quark_d20xx_target
Definition: quark_d20xx.c:90
target_addr_t working_area_virt
Definition: target.h:162
static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range, uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
static void h_u32_to_be(uint8_t *buf, int val)
Definition: types.h:203
void Jim_GetOpt_NvpUnknown(Jim_GetOptInfo *goi, const Jim_Nvp *nvptable, int hadprefix)
Create an appropriate error message for an NVP.
Definition: jim-nvp.c:273
static void writeData(FILE *f, const void *data, size_t len)
bool has_dap
Definition: target.h:192
struct command_context * current_command_context(Jim_Interp *interp)
Definition: command.c:178
target_addr_t address
struct target * current_target
Definition: command.h:56
#define CALL_COMMAND_HANDLER(name, extra ...)
Use this to macro to call a command helper (or a nested handler).
Definition: command.h:106
Jim_Nvp * Jim_Nvp_value2name_simple(const Jim_Nvp *p, int value)
Definition: jim-nvp.c:144
static int jtag_enable_callback(enum jtag_event event, void *priv)
static const struct command_registration target_exec_command_handlers[]
struct command_context * ctx
Definition: command.h:77
static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
unsigned(* address_bits)(struct target *target)
Definition: target_type.h:298
int value
Definition: jim-nvp.h:86
int(* add_context_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:166
struct backoff_timer backoff
Definition: target.h:200
static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
static int target_init_one(struct command_context *cmd_ctx, struct target *target)
static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
int gdb_max_connections
Definition: target.h:214
static const struct command_registration target_instance_command_handlers[]
int(* read_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Target memory read callback.
Definition: target_type.h:130
int Jim_GetOpt_Setup(Jim_GetOptInfo *p, Jim_Interp *interp, int argc, Jim_Obj *const *argv)
GetOpt - how to.
Definition: jim-nvp.c:169
struct target_type riscv_target
Definition: riscv.c:2742
void * arch_info
Definition: target.h:178
struct target * next
Definition: target.h:180
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
int target_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the ContextID breakpoint for target.
int(* step)(struct target *target, int current, target_addr_t address, int handle_breakpoints)
Definition: target_type.h:59
enum target_event event
Definition: target.h:298
static int target_register_user_commands(struct command_context *cmd_ctx)
int(* read_buffer)(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
Definition: target_type.h:140
struct target_type arcv2_target
Definition: arc.c:2239
#define ERROR_OK
Definition: log.h:147
int target_unregister_event_callback(int(*callback)(struct target *target, enum target_event event, void *priv), void *priv)
static int handle_target(void *priv)
bool is_jtag_poll_safe(void)
Return true if it&#39;s safe for a background polling task to access the JTAG scan chain.
Definition: jtag/core.c:157
struct jtag_tap * tap
Definition: target.h:133
static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
void alive_sleep(uint64_t ms)
Definition: helper/log.c:473
Definition: trace.h:30
static const int polling_interval
static Jim_Nvp nvp_config_opts[]
int(* checksum_memory)(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Definition: target_type.h:147
int target_resume(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution)
Make the target (re)start executing using its saved execution context (possibly with some modificatio...
int fileio_close(struct fileio *fileio)
struct target_type mips_m4k_target
Definition: mips_m4k.c:1393
struct target * get_current_target_or_null(struct command_context *cmd_ctx)
int(* callback)(struct target *target, enum target_event event, void *priv)
Definition: target.h:307
static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
int(* start_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, void *arch_info)
Definition: target_type.h:197
static int count
Definition: helper/log.c:62
The JTAG interface can be implemented with a software or hardware fifo.
int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
const char * target_event_name(enum target_event event)
Return the name of a target event enumeration value.
int target_start_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, void *arch_info)
Executes a target-specific native code algorithm and leaves it running.
static uint64_t le_to_h_u64(const uint8_t *buf)
Definition: types.h:117
int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
bool start_address_set
Definition: image.h:62
static const struct command_registration target_subcommand_handlers[]
const char * debug_reason_name(struct target *t)
static int target_timer_callback_periodic_restart(struct target_timer_callback *cb, struct timeval *now)
target_event
Definition: target.h:248
bool dbgbase_set
Definition: target.h:188
uint32_t addr
Definition: nuttx.c:76
int target_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Remove the breakpoint for target.
static int target_create(Jim_GetOptInfo *goi)
uint32_t size
Definition: target.h:100
static int powerDropout
struct target_type stm8_target
Definition: stm8.c:2173
int target_unregister_trace_callback(int(*callback)(struct target *target, size_t len, uint8_t *data, void *priv), void *priv)
struct target_list * next
Definition: target.h:222
static void free_fastload(void)
struct watchpoint * watchpoints
Definition: target.h:174
target_register_class
Definition: target.h:123
int(* check_reset)(struct target *target)
Definition: target_type.h:280
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
int fileio_write(struct fileio *fileio, size_t size, const void *buffer, size_t *size_written)
int command_run_line(struct command_context *context, char *line)
Definition: command.c:640
enum watchpoint_rw rw
Definition: breakpoints.h:52
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:776
unsigned int time_ms
Definition: target.h:331
static int find_target(struct command_invocation *cmd, const char *name)
int target_call_event_callbacks(struct target *target, enum target_event event)
int target_run_read_async_algorithm(struct target *target, uint8_t *buffer, uint32_t count, int block_size, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t buffer_start, uint32_t buffer_size, uint32_t entry_point, uint32_t exit_point, void *arch_info)
This routine is a wrapper for asynchronous algorithms.
struct target_type hla_target
Definition: hla_target.c:636
#define NULL
Definition: usb.h:27
int target_register_commands(struct command_context *cmd_ctx)
target_addr_t address
Definition: breakpoints.h:36
int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
Obtain file-I/O information from target for GDB to do syscall.
int(* target_write_fn)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
#define LOG_DEBUG(expr ...)
Definition: log.h:118
bool target_supports_gdb_connection(struct target *target)
Check if target allows GDB connections.
int(* gdb_fileio_end)(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
Definition: target_type.h:288
int target_number
Definition: target.h:132
const char *(* get_gdb_arch)(struct target *target)
Target architecture for GDB.
Definition: target_type.h:98
#define TARGET_ADDR_FMT
Definition: types.h:359
int Jim_GetOpt_String(Jim_GetOptInfo *goi, const char **puthere, int *len)
Remove argv[0] as string.
Definition: jim-nvp.c:208
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
int fileio_open(struct fileio **fileio, const char *url, enum fileio_access access_type, enum fileio_type type)
unsigned target_address_bits(struct target *target)
Return the number of address bits this target supports.
int(* read_phys_memory)(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: target_type.h:263
static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
long long base_address
Definition: image.h:61
int(* write_buffer)(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
Definition: target_type.h:144
struct rtos * rtos
Definition: target.h:197
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:774
static int handle_bp_command_list(struct command_invocation *cmd)
struct target * get_target_by_num(int num)
static int target_soft_reset_halt(struct target *target)
int target_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the breakpoint for target.
static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
static const struct command_registration target_command_handlers[]
Definition: target.h:129
static const char * target_strerror_safe(int err)
struct target_type arm11_target
Holds methods for ARM11xx targets.
Definition: arm11.c:1360
static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
static int runPowerDropout
struct working_area ** user
Definition: target.h:103
static void target_reset_examined(struct target *target)
Reset the examined flag for the given target.
int(* assert_reset)(struct target *target)
Definition: target_type.h:76
bool dirty
Definition: register.h:132
int image_read_section(struct image *image, int section, uint32_t offset, uint32_t size, uint8_t *buffer, size_t *size_read)
Definition: image.c:841
struct target_type avr32_ap7k_target
Definition: avr32_ap7k.c:592
int(* get)(struct reg *reg)
Definition: register.h:160
int rtos_smp_init(struct target *target)
Definition: rtos.c:64
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
unsigned char UNIT[2]
struct target * target
Definition: rtt/rtt.c:33
struct semihosting * semihosting
Definition: target.h:217
int duration_start(struct duration *duration)
Update the duration->start field to start the duration measurement.
Definition: time_support.c:80
target_addr_t address
Definition: target.h:99
int target_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
int(* callback)(struct target *target, size_t len, uint8_t *data, void *priv)
Definition: target.h:321
static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
int target_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove the watchpoint for target.
struct breakpoint * next
Definition: breakpoints.h:42
static bool target_reset_nag